34 research outputs found

    MYT1L mutations cause intellectual disability and variable obesity by dysregulating gene expression and development of the neuroendocrine hypothalamus

    Get PDF
    Deletions at chromosome 2p25.3 are associated with a syndrome consisting of intellectual disability and obesity. The smallest region of overlap for deletions at 2p25.3 contains PXDN and MYT1L. MYT1L is expressed only within the brain in humans. We hypothesized that single nucleotide variants (SNVs) in MYT1L would cause a phenotype resembling deletion at 2p25.3. To examine this we sought MYT1L SNVs in exome sequencing data from 4, 296 parent-child trios. Further variants were identified through a genematcher-facilitated collaboration. We report 9 patients with MYT1L SNVs (4 loss of function and 5 missense). The phenotype of SNV carriers overlapped with that of 2p25.3 deletion carriers. To identify the transcriptomic consequences of MYT1L loss of function we used CRISPR-Cas9 to create a knockout cell line. Gene Ontology analysis in knockout cells demonstrated altered expression of genes that regulate gene expression and that are localized to the nucleus. These differentially expressed genes were enriched for OMIM disease ontology terms “mental retardation”. To study the developmental effects of MYT1L loss of function we created a zebrafish knockdown using morpholinos. Knockdown zebrafish manifested loss of oxytocin expression in the preoptic neuroendocrine area. This study demonstrates that MYT1L variants are associated with syndromic obesity in humans. The mechanism is related to dysregulated expression of neurodevelopmental genes and altered development of the neuroendocrine hypothalamus

    Outcomes of COVID-19 in patients with primary systemic vasculitis or polymyalgia rheumatica from the COVID-19 Global Rheumatology Alliance physician registry: a retrospective cohort study

    Get PDF
    BACKGROUND: Patients with primary systemic vasculitis or polymyalgia rheumatica might be at a high risk for poor COVID-19 outcomes due to the treatments used, the potential organ damage cause by primary systemic vasculitis, and the demographic factors associated with these conditions. We therefore aimed to investigate factors associated with COVID-19 outcomes in patients with primary systemic vasculitis or polymyalgia rheumatica. METHODS: In this retrospective cohort study, adult patients (aged ≄18 years) diagnosed with COVID-19 between March 12, 2020, and April 12, 2021, who had a history of primary systemic vasculitis (antineutrophil cytoplasmic antibody [ANCA]-associated vasculitis, giant cell arteritis, Behçet's syndrome, or other vasculitis) or polymyalgia rheumatica, and were reported to the COVID-19 Global Rheumatology Alliance registry were included. To assess COVID-19 outcomes in patients, we used an ordinal COVID-19 severity scale, defined as: (1) no hospitalisation; (2) hospitalisation without supplemental oxygen; (3) hospitalisation with any supplemental oxygen or ventilation; or (4) death. Multivariable ordinal logistic regression analyses were used to estimate odds ratios (ORs), adjusting for age, sex, time period, number of comorbidities, smoking status, obesity, glucocorticoid use, disease activity, region, and medication category. Analyses were also stratified by type of rheumatic disease. FINDINGS: Of 1202 eligible patients identified in the registry, 733 (61·0%) were women and 469 (39·0%) were men, and their mean age was 63·8 years (SD 17·1). A total of 374 (31·1%) patients had polymyalgia rheumatica, 353 (29·4%) had ANCA-associated vasculitis, 183 (15·2%) had giant cell arteritis, 112 (9·3%) had Behçet's syndrome, and 180 (15·0%) had other vasculitis. Of 1020 (84·9%) patients with outcome data, 512 (50·2%) were not hospitalised, 114 (11·2%) were hospitalised and did not receive supplemental oxygen, 239 (23·4%) were hospitalised and received ventilation or supplemental oxygen, and 155 (15·2%) died. A higher odds of poor COVID-19 outcomes were observed in patients who were older (per each additional decade of life OR 1·44 [95% CI 1·31–1·57]), were male compared with female (1·38 [1·05–1·80]), had more comorbidities (per each additional comorbidity 1·39 [1·23–1·58]), were taking 10 mg/day or more of prednisolone compared with none (2·14 [1·50–3·04]), or had moderate, or high or severe disease activity compared with those who had disease remission or low disease activity (2·12 [1·49–3·02]). Risk factors varied among different disease subtypes. INTERPRETATION: Among patients with primary systemic vasculitis and polymyalgia rheumatica, severe COVID-19 outcomes were associated with variable and largely unmodifiable risk factors, such as age, sex, and number of comorbidities, as well as treatments, including high-dose glucocorticoids. Our results could be used to inform mitigation strategies for patients with these diseases. FUNDING: American College of Rheumatology and the European Alliance of Associations for Rheumatology

    SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila

    Get PDF
    In vitro studies have shown that SCAR/WAVE activates the Arp2/3 complex to generate actin filaments, which in many cell types are organised into lamellipodia that are thought to have an important role in cell migration. Here we demonstrate that SCAR is utilised by Drosophila macrophages to drive their developmental and inflammatory migrations and that it is regulated via the Hem/Kette/Nap1-containing SCAR/WAVE complex. SCAR is also important in protecting against bacterial pathogens and in wound repair as SCAR mutant embryos succumb more readily to both sterile and infected wounds. However, in addition to driving the formation of lamellipodia in macrophages, SCAR is required cell autonomously for the correct processing of phagocytosed apoptotic corpses by these professional phagocytes. Removal of this phagocytic burden by preventing apoptosis rescues macrophage lamellipodia formation and partially restores motility. Our results show that efficient processing of phagosomes is critical for effective macrophage migration in vivo. These findings have important implications for the resolution of macrophages from chronic wounds and the behaviour of those associated with tumours, because phagocytosis of debris may serve to prolong the presence of these cells at these sites of pathology
    corecore