65 research outputs found

    Clinical and Genetic Advances in Paget’s Disease of Bone: a Review

    Get PDF

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    FcγRIIb differentially regulates pre-immune and germinal center B cell tolerance in mouse and human.

    Get PDF
    Several tolerance “checkpoints” exist throughout B cell development to control autoreactive B cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that inhibits B cell activation and, if defective, is associated with autoimmune disease. Its impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced expression of FcγRIIb leads to increased deletion and anergy of autoreactive immature B cells, but despite this autoreactive B cells expand in the germinal center and serum autoantibodies are produced, even in response to exogenous non-self antigen. Thus, we show FcγRIIb has opposing effects on pre- and post-immune tolerance checkpoints, and suggest B cell tolerance requires the control of “bystander” germinal center B cells with low or no affinity for the immunization antigen.This work was funded by the Wellcome Trust (Programme Grant Number 083650/Z/07/Z to KGCS) and supported by the NIHR Cambridge Biomedical Research Centre. ME was funded by the Wellcome Trust (Programme Grant Number 083650/Z/07/Z), by a Junior Team Leader starting grant from the Laboratory of Excellence in Research on Medication and Innovative Therapeutics (LabEx LERMIT) supported by a grant from ANR (ANR-10-LABX-33) under the program “Investissements d'Avenir” (ANR-11-IDEX-0003-01) and by an ANR @RAction starting grant (ANR-14-ACHN- 0008). KGCS is an NIHR Senior Clinical Investigator and a Distinguished Innovator of the Lupus Research Institute

    B Cell Tolerance

    No full text

    V(D)J recombinase induction in splenic B lymphocytes is inhibited by antigen-receptor signalling

    No full text
    In lymphocytes, DNA recombinations that generate the antigen-receptor genes can sometimes be reinduced in receptor-bearing cells in a process called receptor editing, which modifies the specificity of the receptor for antigen. In immature B lymphocytes, B-cell antigen receptor (BCR) signalling stimulates immune tolerance by receptor editing(1–5). More mature splenic B cells can also be induced to undergo V(D)J recombination, which generates diversity in the immune system, either by immunization with foreign proteins(6–9) or by stimulation in vitro with interleukin-4 and lipopolysaccharide(8–10). Here we show that immune tolerance is unlikely to induce V(D)J recombination in mature B cells, because BCR ligation actively inhibits V(D)J recombination induced by interleukin-4 and lipopolysaccharide. Furthermore, immunization of immunoglobulin transgenic mice with ligands of varying avidities for the BCR showed that low-avidity antigen could induce strong V(D)J recombination, whereas non-binding or high-avidity ligands could not. These data suggest that V(D)J recombination induced during the immune response modifies the antigen receptors of B cells with weak, but not strong, reactivity to antigen, potentially rescuing cells with improved receptor affinity and promoting their contribution to the immune response. Thus BCR signalling regulates V(D)J recombination in both tolerance and immunity, but in strikingly different ways

    The Site And Stage Of Anti-dna B-cell Deletion

    Full text link
    ANTIBODIES to DNA and nucleoproteins are found in sera of individuals with systemic autoimmune disease. In the population (and in the autoimmune mouse strain MRL/lpr) there is a great variety of such antinuclear antibodies, but individuals with systemic lupus erythematosus or single MRL mice express a subset only of the antinuclear specificities found in the population. These observations have been interpreted to mean that these antibodies arise by immunization(1) The oligoclonal nature of the autoantibody response and the evidence of selection acting on somatically mutated autoantibodies favour this interpretation(2,3). Specific activation of autoantibodies in disease implies either that autoantibodies are regulated in non-diseased individuals or that autoantigen availability is variable. The former has been demonstrated in anti-DNA transgenic mice. In normal mice, transgene-encoded antibodies against double-stranded (ds) DNA are not expressed in serum or on B cells(4-6). Here we describe modified anti-dsDNA transgenic mice which allow us to study the site and developmental stage at which such B-cell regulation occurs. This model shows that in normal mice B cells expressing anti-DNA specificity are deleted in the bone marrow at a pre-B to immature B transitional stage.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62909/1/373252a0.pd

    STIM1, PKC-δ and RasGRP set a threshold for proapoptotic Erk signaling during B cell development

    No full text
    Clonal deletion of autoreactive B cells is crucial for the prevention of autoimmunity, but the signaling mechanisms that regulate this checkpoint remain undefined. Here we characterize a previously unrecognized Ca(2+)-driven pathway for activation of the kinase Erk, which was proapoptotic and biochemically distinct from Erk activation induced by diacylglycerol (DAG). This pathway required protein kinase C-δ (PKC-δ) and the guanine nucleotide-exchange factor RasGRP and depended on the concentration of the Ca(2+) sensor STIM1, which controls the magnitude of Ca(2+) entry. Developmental regulation of these proteins was associated with selective activation of the pathway in B cells prone to negative selection. This checkpoint was impaired in PKC-δ-deficient mice, which developed B cell autoimmunity. Conversely, overexpression of STIM1 conferred a competitive disadvantage to developing B cells. Our findings establish Ca(2+)-dependent Erk signaling as a critical proapoptotic pathway that mediates the negative selection of B cells
    corecore