33 research outputs found

    Development of an Innovative Mobile Phone-Based Newborn Care Training Application

    Get PDF
    Mobile infrastructure in low - and middle-income countries (LMIC) has shown immense potential to reach the unreachable. Healthcare providers (HCP) are one such group who are at the frontline of the fight against infant mortality in LMICs. Mortality among newborn infants (birth to 28 days) now accounts for around 45% of all under 5-years child mortality. Birth asphyxia is one of the three leading causes of newborn death; neonatal resuscitation training, among health care providers, reduces mortality from birth asphyxia. We have developed a mobile phone-based training app, called mobile Helping Babies Survive (mHBS), to support the training of health care providers on neonatal resuscitation. mHBS is integrated with the District Health Information System (DHIS2) platform, which is used in over 60 countries around the world. The mHBS/DHIS2 training app is a part of an application suite which includes another DHIS2-linked data collection app, mHBS tracker. The mHBS training application has the potential to scale-up integration with other neonatal training apps. Ultimately, the mHBS training suite will provide new insights into healthcare worker education along with the necessary tools for effective care of newborn babies

    ABO blood group system and placental malaria in an area of unstable malaria transmission in eastern Sudan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding the pathogenesis of malaria in pregnancy and its consequences for both the mother and the baby is fundamental for improving malaria control in pregnant women.</p> <p>Aim</p> <p>The study aimed to investigate the role of ABO blood groups on pregnancy outcomes in an area of unstable malaria transmission in eastern Sudan.</p> <p>Methods</p> <p>A total of 293 women delivering in New Half teaching hospital, eastern Sudan during the period October 2006–March 2007 have been analyzed. ABO blood groups were determined and placental histopathology examinations for malaria were performed. Birth and placental weight were recorded and maternal haemoglobin was measured.</p> <p>Results</p> <p>114 (39.7%), 61 (22.1%) and 118 (38.2%) women were primiparae, secundiparae and multiparae, respectively. The ABO blood group distribution was 82(A), 59 (B), 24 (AB) and 128 (O). Placental histopathology showed acute placental malaria infections in 6 (2%), chronic infections in 6 (2%), 82 (28.0%) of the placentae showed past infection and 199 (68.0%) showed no infection. There was no association between the age (OR = 1.02, 95% CI = 0.45–2.2; <it>P </it>= 0.9), parity (OR = 0.6, 95% CI = 0.3–1.2; <it>P </it>= 0.1) and placental malaria infections. In all parity blood group O was associated with a higher risk of past (OR = 1.9, 95% CI = 1.1–3.2; <it>P </it>= 0.01) placental malaria infection. This was also true when primiparae were considered separately (OR = 2.6, 95% CI = 1.05–6.5, <it>P </it>= 0.03).</p> <p>Among women with all placental infections/past placental infection, the mean haemoglobin was higher in women with the blood group O, but the mean birth weight, foeto-placental weight ratio was not different between these groups and the non-O group.</p> <p>Conclusion</p> <p>These results indicate that women of eastern Sudan are at risk for placental malaria infection irrespective to their age or parity. Those women with blood group O were at higher risk of past placental malaria infection.</p

    ABO phenotypes and malaria related outcomes in mothers and babies in The Gambia: a role for histo-blood groups in placental malaria?

    Get PDF
    BACKGROUND: Host susceptibility to P.falciparum is critical for understanding malaria in pregnancy, its consequences for the mother and baby, and for improving malaria control in pregnant women. Yet host genetic factors which could influence placental malaria risk are little studied and there are no reports of the role of blood group polymorphisms on pregnancy outcomes in malaria endemic areas. This study analyses the association between ABO blood group phenotypes in relation to placental malaria pathology. METHODS: A total of 198 mother/child pairs delivering in Banjul and the Kombo-St Mary District (The Gambia) were analysed. ABO blood group was measured by agglutination. Placental malaria parasites wee enumerated and the presence of malaria pigment noted. Birth anthropometry was recorded and placental weight. Maternal and infant haemoglobin was measured. RESULTS: 89 (45%) subjects were primiparae and 110 (55%)multiparae. The ABO phenotype distribution was 38(A), 52(B), 6(AB) and 102(O). Placental histo-pathology showed active placental malaria in 74 (37%), past infection in 42 (21%) and no infection in 82 cases (41%). In primiparae blood group O was associated with a higher risk of active infection (OR = 2.99; 95% CI = 1.24–7.25), and a lower risk of past infection (OR = 0.31, 0.10–1.01, p < 0.05). In multiparae the O phenotype was associated with reduced prevalence of active or past placental infection (OR = 0.45; 95% CI 0.21–0.98). The mean feto-placental weight ratio was significantly higher in multiparae with group O women compared to non-O phenotypes (5.74 vs 5.36; p = 0.04). Among primiparae with active placental infection, mean birth weight was higher in children of mothers with the O phenotype (p = 0.04). CONCLUSION: These results indicate that blood group O was significantly associated with increased placental malaria infection in primiparae and reduced risk of infection in multiparae. This parity related susceptibility was not present with other ABO phenotypes. Cell surface glycans, such as ABO and related antigens have special relevance in reproductive biology and could modulate specific cell interactions as those associated with the pathogenesis of placental malaria

    Monitoring coastal wetland communities in north-eastern NSW using ASTER and Landsat satellite data

    No full text
    The coastal wetland communities of north-eastern New South Wales (NSW) Australia exist in a subtropical climate with high biodiversity and are affected by anthropogenic and natural stressors such as urbanization and climate change. The aim of the research is to map and monitor the coastal wetland communities in north eastern NSW using satellite data. Advanced Spaceborne Thermal Emission and Reflectance Radiometer, Landsat ETM+ and Landsat TM satellite imagery of November 2003, June 2001 and September 1989 respectively were used to identify and monitor the wetland communities. Supervised classification was performed using the maximum likelihood standard algorithm. Normalized Difference Vegetation Index was produced and the health of the wetland vegetation was evaluated. The wetland maps present significant changes in the coastal wetland communities in the months of September 1989, June 2001 and November 2003. This information could be used by coastal wetland managers in order to enhance the management of these ecosystems
    corecore