22 research outputs found

    Does administration of non-steroidal anti-inflammatory drug determine morphological changes in adrenal cortex: ultrastructural studies

    Get PDF
    Rofecoxib (Vioxx© made by Merck Sharp & Dohme, the USA) is a non-steroidal anti-inflammatory drug which belongs to the group of selective inhibitors of cyclooxygenasis-2, i.e., coxibs. Rofecoxib was first registered in the USA, in May 1999. Since then the drug was received by millions of patients. Drugs of this group were expected to exhibit increased therapeutic action. Additionally, there were expectations concerning possibilities of their application, at least as auxiliary drugs, in neoplastic therpy due to intensifying of apoptosis. In connection with the withdrawal of Vioxx© (rofecoxib) from pharmaceutical market, attempts were made to conduct electron-microscopic evaluation of cortical part of the adrenal gland in preparations obtained from animals under influence of the drug. Every morning animals from the experimental group (15 rats) received rofecoxib (suspension in physiological saline)—non-steroidal anti-inflammatory drug (Vioxx©, Merck Sharp and Dohme, the USA), through an intragastric tube in the dose of 1.25 mg during 8 weeks. In the evaluated material, there was found a greater number of secretory vacuoles and large, containing cholesterol and other lipids as well as generated glucocorticoids, lipid drops in cytoplasm containing prominent endoplasmic reticulum. There were also found cells with cytoplasm of smaller density—especially in apical and basal parts of cells. Mitochondria occasionally demonstrated features of delicate swelling. The observed changes, which occurred on cellular level with application of large doses of the drug, result from mobilization of adaptation mechanisms of the organism

    Activators and targets

    No full text
    Proteins that activate genes are quite disparate in character; in particular, some work 'universally' and others do not. A simple model can accommodate most of the recently published results

    Pollen dispersal of tropical trees (Dinizia excelsa: Fabaceae) by native insects and African honeybees in pristine and fragmented Amazonian rainforest.

    Full text link
    Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees ( Apis mellifera scutellata ) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a TWOGENER analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest ( ~ 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/83310/1/Dick2003.pd
    corecore