6,964 research outputs found

    Lipidomic profiling in Crohn's disease: abnormalities in phosphatidylinositols, with preservation of ceramide, phosphatidylcholine and phosphatidylserine composition.

    Get PDF
    Crohn's disease is a chronic inflammatory condition largely affecting the terminal ileum and large bowel. A contributing cause is the failure of an adequate acute inflammatory response as a result of impaired secretion of pro-inflammatory cytokines by macrophages. This defective secretion arises from aberrant vesicle trafficking, misdirecting the cytokines to lysosomal degradation. Aberrant intestinal permeability is also well-established in Crohn's disease. Both the disordered vesicle trafficking and increased bowel permeability could result from abnormal lipid composition. We thus measured the sphingo- and phospholipid composition of macrophages, using mass spectrometry and stable isotope labelling approaches. Stimulation of macrophages with heat-killed Escherichia coli resulted in three main changes; a significant reduction in the amount of individual ceramide species, an altered composition of phosphatidylcholine, and an increased rate of phosphatidylcholine synthesis in macrophages. These changes were observed in macrophages from both healthy control individuals and patients with Crohn's disease. The only difference detected between control and Crohn's disease macrophages was a reduced proportion of newly-synthesised phosphatidylinositol 16:0/18:1 over a defined time period. Shotgun lipidomics analysis of macroscopically non-inflamed ileal biopsies showed a significant decrease in this same lipid species with overall preservation of sphingolipid, phospholipid and cholesterol composition

    Novel Heating-Induced Reversion during Crystallization of Al-based Glassy Alloys.

    Get PDF
    Thermal stability and crystallization of three multicomponent glassy alloys, Al86Y7Ni5Co1Fe0.5Pd0.5, Al85Y8Ni5Co1Fe0.5Pd0.5 and Al84Y9Ni4Co1.5Fe0.5Pd1, were examined to assess the ability to form the mixture of amorphous (am) and fcc-aluminum (α-Al) phases. On heating, the glass transition into the supercooled liquid is shown by the 85Al and 84Al glasses. The crystallization sequences are [am] → [am + α-Al] → [α-Al + compounds] for the 86Al and 85Al alloys, and [am] → [am + α-Al + cubic AlxMy (M = Y, Ni, Co, Fe, Pd)] → [am + α-Al] → [α-Al + Al3Y + Al9(Co, Ni)2 + unknown phase] for the 84Al alloy. The glass transition appears even for the 85Al alloy where the primary phase is α-Al. The heating-induced reversion from [am + α-Al + multicomponent AlxMy] to [am + α-Al] for the 84Al alloy is abnormal, not previously observed in crystallization of glassy alloys, and seems to originate from instability of the metastable AlxMy compound, in which significant inhomogeneous strain is caused by the mixture of solute elements. This novel reversion phenomenon is encouraging for obtaining the [am + α-Al] mixture over a wide range of high temperature effective for the formation of Al-based high-strength nanostructured bulk alloys by warm working

    A Chan dietary intervention enhances executive functions and anterior cingulate activity in autism spectrum disorders : a randomized controlled trial

    Get PDF
    Author name used in this publication: Mei-chun Cheung2011-2012 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Respiratory specialists working in different ways: development of a GP hotline and respiratory support service during the COVID-19 pandemic

    Get PDF
    Integration of primary and secondary care for the management of respiratory disease is a long-held ambition. Here, we describe how respiratory specialists at a large NHS trust, working with primary care clinicians in the area, set up a GP hotline and respiratory support service in response to the COVID-19 pandemic, with the aim of enhancing delivery of care to patients in this unprecedented time. Working across traditional organisational boundaries in this way confers benefits to patients and clinicians, illustrating the value of new, integrated models of care

    Higgs Physics: Theory

    Full text link
    I review the theoretical aspects of the physics of Higgs bosons, focusing on the elements that are relevant for the production and detection at present hadron colliders. After briefly summarizing the basics of electroweak symmetry breaking in the Standard Model, I discuss Higgs production at the LHC and at the Tevatron, with some focus on the main production mechanism, the gluon-gluon fusion process, and summarize the main Higgs decay modes and the experimental detection channels. I then briefly survey the case of the minimal supersymmetric extension of the Standard Model. In a last section, I review the prospects for determining the fundamental properties of the Higgs particles once they have been experimentally observed.Comment: 21 pages, 15 figures. Talk given at the XXV International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 11), 22-27 August 2011, Mumbai, Indi

    Anomalous tqγtq\gamma coupling effects in exclusive radiative B-meson decays

    Full text link
    The top-quark FCNC processes will be searched for at the CERN LHC, which are correlated with the B-meson decays. In this paper, we study the effects of top-quark anomalous interactions tqγtq\gamma in the exclusive radiative BKγB\to K^*\gamma and BργB\to\rho\gamma decays. With the current experimental data of the branching ratios, the direct CP and the isospin asymmetries, bounds on the coupling κtcRγ\kappa_{tcR}^{\gamma} from BKγB\to K^*\gamma and κtuRγ\kappa_{tuR}^{\gamma} from BργB\to \rho\gamma decays are derived, respectively. The bound on κtcRγ|\kappa_{tcR}^{\gamma}| from B(BKγ){\mathcal B}(B\to K^{*}\gamma) is generally compatible with that from B(BXsγ){\mathcal B}(B\to X_{s}\gamma). However, the isospin asymmetry Δ(Kγ)\Delta(K^{*}\gamma) further restrict the phase of κtcRγ\kappa_{tcR}^{\gamma}, and the combined bound results in the upper limit, B(tcγ)<0.21\mathcal B(t\to c\gamma)<0.21%, which is lower than the CDF result. For real κtcRγ\kappa_{tcR}^{\gamma}, the upper bound on B(tcγ)\mathcal B(t\to c\gamma) is about of the same order as the 5σ5\sigma discovery potential of ATLAS with an integrated luminosity of 10fb110 {\rm fb}^{-1}. For BργB\to\rho\gamma decays, the NP contribution is enhanced by a large CKM factor Vud/Vtd|V_{ud}/V_{td}|, and the constraint on tuγtu\gamma coupling is rather restrictive, B(tuγ)<1.44×105\mathcal B(t\to u\gamma)<1.44\times 10^{-5}. With refined measurements to be available at the LHCb and the future super-B factories, we can get close correlations between BVγB\to V \gamma and the rare tqγt\to q\gamma decays, which will be studied directly at the LHC ATLAS and CMS.Comment: 25 pages, 15 figures, pdflate

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table
    corecore