28 research outputs found

    Coastal flooding by tropical cyclones and sea-level rise

    Get PDF
    The future impacts of climate change on landfalling tropical cyclones are unclear. Regardless of this uncertainty, flooding by tropical cyclones will increase as a result of accelerated sea-level rise. Under similar rates of rapid sea-level rise during the early Holocene epoch most low-lying sedimentary coastlines were generally much less resilient to storm impacts. Society must learn to live with a rapidly evolving shoreline that is increasingly prone to flooding from tropical cyclones. These impacts can be mitigated partly with adaptive strategies, which include careful stewardship of sediments and reductions in human-induced land subsidence

    Salt Marsh Accretion and Storm Tide Variation: an Example from a Barrier Island in the North Sea

    Get PDF
    We reconstruct past accretion rates of a salt marsh on the island of Sylt, Germany, using measurements of the radioisotopes 210Pb and 137Cs, as well as historical aerial photographs. Results from three cores indicate accretion rates varying between 1 and 16 mm year−1. Comparisons with tide gauge data show that high accretion rates during the 1980s and 1990s coincide with periods of increased storm activity. We identify a critical inundation height of 18 cm below which the strength of a storm seems to positively influence salt marsh accretion rates and above which the frequency of storms becomes the major factor. In addition to sea level rise, we conclude that in low marsh zones subject to higher inundation levels, mean storm strength is the major factor affecting marsh accretion, whereas in high marsh zones with lower inundation levels, it is storm frequency that impacts marsh accretion

    Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise

    No full text
    Over the past few centuries, 25% of the deltaic wetlands associated with the Mississippi Delta have been lost to the ocean . Plans to protect and restore the coast call for diversions of the Mississippi River, and its associated sediment, to sustain and build new land . However, the sediment load of the Mississippi River has been reduced by 50% through dam construction in the Mississippi Basin, which could affect the effectiveness of diversion plans . Here we calculate the amount of sediment stored on the delta plain for the past 12,000 years, and find that mean storage rates necessary to construct the flood plain and delta over this period exceed modern Mississippi River sediment loads. We estimate that, in the absence of sediment input, an additional 10,000-13,500 km will be submerged by the year 2100 owing to subsidence and sea-level rise. Sustaining existing delta surface area would require 18-24 billion tons of sediment, which is significantly more than can be drawn from the Mississippi River in its current state. We conclude that significant drowning is inevitable, even if sediment loads are restored, because sea level is now rising at least three times faster than during delta-plain construction. © 2009 Macmillan Publishers Limited. All rights reserved. 1 2,3 4-6
    corecore