28 research outputs found

    What’s in a Name? Use of Brand versus Generic Drug Names in United States Outpatient Practice

    Get PDF
    BACKGROUND: The use of brand rather than generic names for medications can increase health care costs. However, little is known at a national level about how often physicians refer to drugs using their brand or generic names. OBJECTIVE: To evaluate how often physicians refer to drugs using brand or generic terminology. DESIGN AND PARTICIPANTS: We used data from the 2003 National Ambulatory Medical Care Survey (NAMCS), a nationally representative survey of 25,288 community-based outpatient visits in the United States. After each visit, patient medications were recorded on a survey encounter form by the treating physician or transcribed from office notes. MEASUREMENTS: Our main outcome measure was the frequency with which medications were recorded on the encounter form using their brand or generic names. RESULTS: For 20 commonly used drugs, the median frequency of brand name use was 98% (interquartile range, 81–100%). Among 12 medications with no generic competition at the time of the survey, the median frequency of brand name use was 100% (range 92–100%). Among 8 medications with generic competition at the time of the survey (“multisource” drugs), the median frequency of brand name use was 79% (range 0–98%; P < .001 for difference between drugs with and without generic competition). CONCLUSIONS: Physicians refer to most medications by their brand names, including drugs with generic formulations. This may lead to higher health care costs by promoting the use of brand-name products when generic alternatives are available

    p53 Plays a Role in Mesenchymal Differentiation Programs, in a Cell Fate Dependent Manner

    Get PDF
    Background: The tumor suppressor p53 is an important regulator that controls various cellular networks, including cell differentiation. Interestingly, some studies suggest that p53 facilitates cell differentiation, whereas others claim that it suppresses differentiation. Therefore, it is critical to evaluate whether this inconsistency represents an authentic differential p53 activity manifested in the various differentiation programs. Methodology/Principal Findings: To clarify this important issue, we conducted a comparative study of several mesenchymal differentiation programs. The effects of p53 knockdown or enhanced activity were analyzed in mouse and human mesenchymal cells, representing various stages of several differentiation programs. We found that p53 downregulated the expression of master differentiation-inducing transcription factors, thereby inhibiting osteogenic, adipogenic and smooth muscle differentiation of multiple mesenchymal cell types. In contrast, p53 is essential for skeletal muscle differentiation and osteogenic re-programming of skeletal muscle committed cells. Conclusions: These comparative studies suggest that, depending on the specific cell type and the specific differentiatio

    Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: a worldwide collaborative project.

    Get PDF

    Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors.

    Get PDF
    Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV

    Epidemiology

    No full text

    Isolation and functional analysis of fatty acid desaturase genes from peanut (Arachis hypogaea L.).

    No full text
    Fatty acid desaturases are enzymes that introduce double bonds into fatty acyl chains. Extensive studies of fatty acid desaturases have been done in many plants. However, less is known about the diversity of this gene family in peanut (Arachis hypogaea L.), an important oilseed crop that is cultivated worldwide.In this study, twelve novel AhFADs genes were identified and isolated from peanut. Quantitative real-time PCR analysis indicated that the transcript abundances of AhFAB2-2 and AhFAD3-1 were higher in seeds than in other tissues examined, whereas the AhADS and AhFAD7-1 transcripts were more abundant in leaves. AhFAB2-3, AhFAD3-2, AhFAD4, AhSLD-4, and AhDES genes were highly expressed in flowers, whereas AhFAD7-2, AhSLD-2, and AhSLD-3 were expressed most strongly in stems. During seed development, the expressions of AhFAB2-2, AhFAD3-1, AhFAD7-1, and AhSLD-3 gradually increased in abundance, reached a maximum expression level, and then decreased. The AhFAB2-3, AhFAD3-2, AhFAD4, AhADS, and AhDES transcript levels remained relatively high at the initial stage of seed development, but decreased thereafter. The AhSLD-4 transcript level remained relatively low at the initial stage of seed development, but showed a dramatic increase in abundance at the final stage. The AhFAD7-2 and AhSLD-2 transcript levels remained relatively high at the initial stage of seed development, but then decreased, and finally increased again. The AhFAD transcripts were differentially expressed following exposure to abiotic stresses or abscisic acid. Moreover, the functions of one AhFAD6 and four AhSLD genes were confirmed by heterologous expression in Synechococcus elongates or Saccharomyces cerevisiae.The present study provides valuable information that improves understanding of the biological roles of FAD genes in fatty acid synthesis, and will help peanut breeders improve the quality of peanut oil via molecular design breeding
    corecore