18 research outputs found
Locomotion disorders and skin and claw lesions in gestating sows housed in dynamic versus static groups
Lameness and lesions to the skin and claws of sows in group housing are commonly occurring indicators of reduced welfare. Typically, these problems are more common in group housing than in individual housing systems. Group management type (dynamic versus static) and stage of gestation influence the behavior of the animals, which in turn influences the occurrence of these problems. The present study compared prevalence, incidence and mean scores of lameness and skin and claw lesions in static versus dynamic group housed sows at different stages of gestation during three consecutive reproductive cycles. A total of 10 Belgian sow herds were monitored; 5 in which dynamic groups and 5 in which static groups were utilized. All sows were visually assessed for lameness and skin lesions three times per cycle and the claws of the hind limbs were assessed once per cycle. Lameness and claw lesions were assessed using visual analogue scales. Static groups, in comparison with dynamic groups, demonstrated lower lameness scores (P<0.05) and decreased skin lesion prevalence (24.9 vs. 47.3%, P<0.05) at the end of gestation. There was no difference between treatment group regarding claw lesion prevalence with 75.5% of sows demonstrating claw lesions regardless of group management. Prevalences of lameness (22.4 vs. 8.9%, P<0.05) and skin lesions (46.6 vs. 4.4%, P<0.05) were highest during the group-housed phase compared to the individually housed phases. Although the prevalence of lameness and skin lesions did not differ three days after grouping versus at the end of the group-housing phase, their incidence peaked during the first three days after moving from the insemination stalls to the group. In conclusion, the first three days after grouping was the most risky period for lameness incidence, but there was no significant difference between static or dynamic group management
Functional analysis of Casein Kinase 1 in a minimal circadian system
The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1) is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism