21 research outputs found

    Inclusion of diverse populations in genomic research and health services: Genomix workshop report

    Get PDF
    Clinical genetic services and genomic research are rapidly developing but, historically, those with the greatest need are the least to benefit from these advances. This encompasses low-income communities, including those from ethnic minority and indigenous backgrounds. The “Genomix” workshop at the European Society of Human Genetics (ESHG) 2016 conference offered the opportunity to consider possible solutions for these disparities from the experiences of researchers and genetic healthcare practitioners working with underserved communities in the USA, UK and Australia. Evident from the workshop and corresponding literature is that a multi-faceted approach to engaging communities is essential. This needs to be complemented by redesigning healthcare systems that improves access and raises awareness of the needs of these communities. At a more strategic level, institutions involved in funding research, commissioning and redesigning genetic health services also need to be adequately represented by underserved populations with intrinsic mechanisms to disseminate good practice and monitor participation. Further, as genomic medicine is mainstreamed, educational programmes developed for clinicians should incorporate approaches to alleviate disparities in accessing genetic services and improving study participation

    Treatment of enterohemorrhagic Escherichia coli (EHEC) infection and hemolytic uremic syndrome (HUS)

    Get PDF
    Verotoxigenic Escherichia coli (VTEC) are a specialized group of E. coli that can cause severe colonic disease and renal failure. Their pathogenicity derives from virulence factors that enable the bacteria to colonize the colon and deliver extremely powerful toxins known as verotoxins (VT) or Shiga toxins (Stx) to the systemic circulation. The recent devastating E. coli O104:H4 epidemic in Europe has shown how helpless medical professionals are in terms of offering effective therapies. By examining the sources and distribution of these bacteria, and how they cause disease, we will be in a better position to prevent and treat the inevitable future cases of sporadic disease and victims of common source outbreaks. Due to the complexity of pathogenesis, it is likely a multitargeted approach is warranted. Developments in terms of these treatments are discussed

    aHUS caused by complement dysregulation: new therapies on the horizon

    Get PDF
    Atypical hemolytic uremic syndrome (aHUS) is a heterogeneous disease that is caused by defective complement regulation in over 50% of cases. Mutations have been identified in genes encoding both complement regulators [complement factor H (CFH), complement factor I (CFI), complement factor H-related proteins (CFHR), and membrane cofactor protein (MCP)], as well as complement activators [complement factor B (CFB) and C3]. More recently, mutations have also been identified in thrombomodulin (THBD), an anticoagulant glycoprotein that plays a role in the inactivation of C3a and C5a. Inhibitory autoantibodies to CFH account for an additional 5–10% of cases and can occur in isolation or in association with mutations in CFH, CFI, CFHR 1, 3, 4, and MCP. Plasma therapies are considered the mainstay of therapy in aHUS secondary to defective complement regulation and may be administered as plasma infusions or plasma exchange. However, in certain cases, despite initiation of plasma therapy, renal function continues to deteriorate with progression to end-stage renal disease and renal transplantation. Recently, eculizumab, a humanized monoclonal antibody against C5, has been described as an effective therapeutic strategy in the management of refractory aHUS that has failed to respond to plasma therapy. Clinical trials are now underway to further evaluate the efficacy of eculizumab in the management of both plasma-sensitive and plasma-resistant aHUS
    corecore