41 research outputs found

    Measurement of global polarization of {\Lambda} hyperons in few-GeV heavy-ion collisions

    Full text link
    The global polarization of {\Lambda} hyperons along the total orbital angular momentum of a relativistic heavy-ion collision is presented based on the high statistics data samples collected in Au+Au collisions at \sqrt{s_{NN}} = 2.4 GeV and Ag+Ag at 2.55 GeV with the High-Acceptance Di-Electron Spectrometer (HADES) at GSI, Darmstadt. This is the first measurement below the strangeness production threshold in nucleon-nucleon collisions. Results are reported as a function of the collision centrality as well as a function of the hyperon transverse momentum (p_T) and rapidity (y_{CM}) for the range of centrality 0--40%. We observe a strong centrality dependence of the polarization with an increasing signal towards peripheral collisions. For mid-central (20--40%) collisions the polarization magnitudes are (%) = 6.0 \pm 1.3 (stat.) \pm 2.0 (syst.) for Au+Au and (%) = 4.6 \pm 0.4 (stat.) \pm 0.5 (syst.) for Ag+Ag, which are the largest values observed so far. This observation thus provides a continuation of the increasing trend previously observed by STAR and contrasts expectations from recent theoretical calculations predicting a maximum in the region of collision energies about 3 GeV. The observed polarization is of a similar magnitude as predicted by 3D fluid dynamics and the UrQMD plus thermal vorticity model and significantly above results from the AMPT model.Comment: 8 pages, 4 figure

    Assessment of wear and periacetabular osteolysis using dual energy computed tomography on a pig cadaver to identify the lowest acceptable radiation dose

    No full text
    Objectives Computed tomography (CT) plays an important role in evaluating wear and periacetabular osteolysis (PAO) in total hip replacements. One concern with CT is the high radiation exposure since standard pelvic CT provides approximately 3.5 millisieverts (mSv) of radiation exposure, whereas a planar radiographic examination with three projections totals approximately 0.5 mSv. The objective of this study was to evaluate the lowest acceptable radiation dose for dual-energy CT (DECT) images when measuring wear and periacetabular osteolysis in uncemented metal components. Materials and Methods A porcine pelvis with bilateral uncemented hip prostheses and with known linear wear and acetabular bone defects was examined in a third-generation multidetector DECT scanner. The examinations were performed with four different radiation levels both with and without iterative reconstruction techniques. From the high and low peak kilo voltage acquisitions, polychrmoatic images were created together with virtual monochromatic images of energies 100 kiloelectron volts (keV) and 150 keV. Results We could assess wear and PAO while substantially lowering the effective radiation dose to 0.7 mSv for a total pelvic view with an accuracy of around 0.5 mm for linear wear and 2 mm to 3 mm for PAO. Conclusion CT for detection of prosthetic wear and PAO could be used with clinically acceptable accuracy at a radiation exposure level equal to plain radiographic exposures

    Diffusion tensor imaging and fiber tractography of the median nerve at 1.5T: optimization of b value

    Full text link
    OBJECTIVE: The objective of this study was to systematically assess the optimal b value for diffusion tensor imaging and fiber tractography of the median nerve at 1.5 T. MATERIALS AND METHODS: This is a prospective study which was carried out with institutional review board approval and written informed consent from the study subjects. Fifteen healthy volunteers (seven men, eight women; mean age, 31.2 years) underwent diffusion tensor imaging of the wrist. A single-shot spin-echo-based echo-planar imaging sequence (TR/TE, 7000/103 ms) was performed in each subject at eight different b values ranging from 325 to 1,550 s/mm(2). Number and length of reconstructed fiber tracts, fiber density index (FDi), fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were calculated for the median nerve. Signal-to-noise ratio (SNR) was also calculated for each acquisition. The overall image quality was assessed by two readers in consensus by ranking representative fiber tract images for each subject using a scale range from 1 to 8 (1 = best to 8 = worst image quality). RESULTS: Longest fibers were observed for b values between 675 and 1,025 s/mm(2). Maximum FDi was found at b values of 1,025 s/mm(2). FA was between 0.5 and 0.6 for all b values. ADC gradually decreased from 1.44 x 10(-3) to 0.92 x 10(-3) mm(2)/s with increasing b values. Maximum SNR +/- standard deviation (175.4 +/- 72.6) was observed at the lowest b value and decreased with increasing b values. SNR at b values of 1,025 s/mm(2) was 48.5% of the maximum SNR. Optimal fiber tract image quality was found for b values of 1,025 s/mm(2). CONCLUSIONS: The optimal b value for diffusion tensor imaging and fiber tractography of the median nerve at 1.5 T was 1,025 s/mm(2)

    Genomic profiling of chondrosarcoma: chromosomal patterns in central and peripheral tumors.

    No full text
    PURPOSE: Histologic grade is currently the best predictor of clinical course in chondrosarcoma patients. Grading suffers, however, from extensive interobserver variability and new objective markers are needed. Hence, we have investigated DNA copy numbers in chondrosarcomas with the purpose of identifying markers useful for prognosis and subclassification. EXPERIMENTAL DESIGN: The overall pattern of genomic imbalances was assessed in a series of 67 chondrosarcomas using array comparative genomic hybridization. Statistical analyses were applied to evaluate the significance of alterations detected in subgroups based on clinical data, morphology, grade, tumor size, and karyotypic features. Also, the global gene expression profiles were obtained in a subset of the tumors. RESULTS: Genomic imbalances, in most tumors affecting large regions of the genome, were found in 90% of the cases. Several apparently distinctive aberrations affecting conventional central and peripheral tumors, respectively, were identified. Although rare, recurrent amplifications were found at 8q24.21-q24.22 and 11q22.1-q22.3, and homozygous deletions of loci previously implicated in chondrosarcoma development affected the CDKN2A, EXT1, and EXT2 genes. The chromosomal imbalances in two distinct groups of predominantly near-haploid and near-triploid tumors, respectively, support the notion that polyploidization of an initially hyperhaploid/hypodiploid cell population is a common mechanism of chondrosarcoma progression. Increasing patient age as well as tumor grade were associated with adverse outcome, but no copy number imbalance affected metastasis development or tumor-associated death. CONCLUSION: Despite similarities in the overall genomic patterns, the present findings suggest that some regions are specifically altered in conventional central and peripheral tumors, respectively
    corecore