143 research outputs found

    MINIMIZATION OF MOBILE AD HOC NETWORKS ROUTING ATTACKS USING DS MATHEMATICAL THEORY

    Get PDF
    Mobile Ad hoc Networks (MANET) have been highly vulnerable to attacks due to the dynamic nature of its network infrastructure. Among these attacks, routing attacks have received considerable attention since it could cause the most devastating damage to MANET. Even though there exist several intrusion response techniques to mitigate such critical attacks, existing solutions typically attempt to isolate malicious nodes based on binary or naı¨ve fuzzy response decisions. However, binary responses may result in the unexpected network partition, causing additional damages to the network infrastructure, and naı¨ve fuzzy responses could lead to uncertainty in countering routing attacks in MANET. In this paper, we propose a risk-aware response mechanism to systematically cope with the identified routing attacks. Our risk-aware approach is based on an extended Dempster-Shafer mathematical theory of evidence introducing a notion of importance factors. In addition, our experiments demonstrate the effectiveness of our approach with the consideration of several performance metric

    Climate-smart agriculture practices for mitigating greenhouse gas emissions

    Get PDF
    Agricultural lands make up approximately 37% of the global land surface, and agriculture is a significant source of greenhouse gas (GHG) emissions, including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Those GHGs are responsible for the majority of the anthropogenic globalwarming effect.Agricultural GHG emissions are associated with agricultural soil management (e.g. tillage), use of both synthetic and organic fertilisers, livestock management, burning of fossil fuel for agricultural operations, and burning of agricultural residues and land use change. When natural ecosystems such as grasslands are converted to agricultural production, 20-40% of the soil organic carbon (SOC) is lost over time, following cultivation.We thus need to develop management practices that can maintain or even increase SOC storage in and reduce GHG emissions from agricultural ecosystems. We need to design systematic approaches and agricultural strategies that can ensure sustainable food production under predicted climate change scenarios, approaches that are being called climate-smart agriculture (CSA). Climate-smart agricultural management practices, including conservation tillage, use of cover crops and biochar application to agricultural fields, and strategic application of synthetic and organic fertilisers have been considered a way to reduce GHG emission from agriculture. Agricultural management practices can be improved to decreasing disturbance to the soil by decreasing the frequency and extent of cultivation as a way to minimise soil C loss and/or to increase soil C storage. Fertiliser nitrogen (N) use efficiency can be improved to reduce fertilizer N application and N loss. Management measures can also be taken to minimise agricultural biomass burning. This chapter reviews the current literature on CSA practices that are available to reduce GHG emissions and increase soil C sequestration and develops a guideline on best management practices to reduce GHG emissions, increase C sequestration, and enhance crop productivity in agricultural production systems

    Evidence to Support Karyotypic Variation of the Mosquito, Anopheles peditaeniatus in Thailand

    Get PDF
    Eight isoline colonies of Anopheles peditaeniatus Leicester (Diptera: Culicidae) were established from wild-caught females collected from buffalo-baited traps at 8 localities in Thailand. They showed 2 types of X (X2, X3) and 4 types of Y (Y2, Y3, Y4, Y5) chromosomes based on the number and amount of major block(s) of heterochromatin present in the heterochromatic arm, and were tentatively designated as Forms B (X2, X3, Y2), C (X3, Y3), D (X3, Y4) and E (X2, X3, Y5). Form B was found in Nan, Ratchaburi, and Chumphon provinces; Form C was obtained in Chon Buri province; Form D was recovered in Kamphaeng Phet province; and Form E was acquired in Chiang Mai, Udon Thani, and Ubon Ratchathani provinces. Crossing studies among the 8 isoline colonies, which were representative of 4 karyotypic forms of An. peditaeniatus, revealed genetic compatibility in providing viable progenies and synaptic salivary gland polytene chromosomes through F2-generations, thus suggesting the conspecific nature of these karyotypic forms. These results were supported by the very low intraspecific sequence variations (0.0 – 1.1%) of the nucleotide sequences in ribosomal DNA (ITS2) and mitochondrial DNA (COI and COII) of the 4 forms

    Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na<sup>+ </sup>channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common <it>kdr </it>mutation in insects, was reported in <it>Anopheles culicifacies</it>-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an <it>An. culicifacies </it>population from Malkangiri district of Orissa, India.</p> <p>Methods</p> <p><it>Anopheles culicifacies sensu lato (s.l.) </it>samples, collected from a population of Malkangiri district of Orissa (India), were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR) was developed for the detection of the new mutation L1014S. The <it>An. culicifacies </it>population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS) and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing.</p> <p>Results</p> <p>DNA sequencing of <it>An. culicifacies </it>individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA)-to-Phe (TTT) or -Ser (TCA) changes, respectively. A third and novel substitution, Val (GTG)-to-Leu (TTG or CTG), was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the identification of the new mutation L1014S was found specific as evident from DNA sequencing results of respective samples. Since L1014S was found tightly linked to V1010L, no separate assay was developed for the latter mutation. Screening of population using PIRA-PCR assays for 1014S and ARMS for 1014F alleles revealed the presence of all the three amino acid substitutions in low frequency.</p> <p>Conclusions</p> <p>This is the first report of the presence of L1014S (homologous to the <it>kdr-e </it>in <it>An. gambiae</it>) and a novel mutation V1010L (resulting from G-to-T or -C transversions) in the VGSC of <it>An. culicifacies </it>in addition to the previously described mutation L1014F. The V1010L substitution was tightly linked to L1014S substitution. A new PIRA-PCR strategy was developed for the detection of L1014S mutation and the linked V1010L mutation.</p

    SARS-CoV Pathogenesis Is Regulated by a STAT1 Dependent but a Type I, II and III Interferon Receptor Independent Mechanism

    Get PDF
    Severe acute respiratory syndrome coronavirus (SARS-CoV) infection often caused severe end stage lung disease and organizing phase diffuse alveolar damage, especially in the elderly. The virus-host interactions that governed development of these acute end stage lung diseases and death are unknown. To address this question, we evaluated the role of innate immune signaling in protection from human (Urbani) and a recombinant mouse adapted SARS-CoV, designated rMA15. In contrast to most models of viral pathogenesis, infection of type I, type II or type III interferon knockout mice (129 background) with either Urbani or MA15 viruses resulted in clinical disease outcomes, including transient weight loss, denuding bronchiolitis and alveolar inflammation and recovery, identical to that seen in infection of wildtype mice. This suggests that type I, II and III interferon signaling play minor roles in regulating SARS pathogenesis in mouse models. In contrast, infection of STAT1−/− mice resulted in severe disease, high virus titer, extensive pulmonary lesions and 100% mortality by day 9 and 30 post-infection with rMA15 or Urbani viruses, respectively. Non-lethal in BALB/c mice, Urbani SARS-CoV infection in STAT1−/− mice caused disseminated infection involving the liver, spleen and other tissues after day 9. These findings demonstrated that SARS-CoV pathogenesis is regulated by a STAT1 dependent but type I, II and III interferon receptor independent, mechanism. In contrast to a well documented role in innate immunity, we propose that STAT1 also protects mice via its role as an antagonist of unrestrained cell proliferation

    Genetic structure of Plasmodium falciparum field isolates in eastern and north-eastern India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular techniques have facilitated the studies on genetic diversity of <it>Plasmodium </it>species particularly from field isolates collected directly from patients. The <it>msp-1 </it>and <it>msp-2 </it>are highly polymorphic markers and the large allelic polymorphism has been reported in the block 2 of the <it>msp-1 </it>gene and the central repetitive domain (block3) of the <it>msp-2 </it>gene. Families differing in nucleotide sequences and in number of repetitive sequences (length variation) were used for genotyping purposes. As limited reports are available on the genetic diversity existing among <it>Plasmodium falciparum </it>population of India, this report evaluates the extent of genetic diversity in the field isolates of <it>P. falciparum </it>in eastern and north-eastern regions of India.</p> <p>Methods</p> <p>A study was designed to assess the diversity of <it>msp-1 </it>and <it>msp-2 </it>among the field isolates from India using allele specific nested PCR assays and sequence analysis. Field isolates were collected from five sites distributed in three states namely, Assam, West Bengal and Orissa.</p> <p>Results</p> <p><it>P. falciparum </it>isolates of the study sites are highly diverse in respect of length as well as sequence motifs with prevalence of all the reported allelic families of <it>msp-1 </it>and <it>msp-2</it>. Prevalence of identical allelic composition as well as high level of sequence identity of alleles suggest a considerable amount of gene flow between the <it>P. falciparum </it>populations of different states. A comparatively higher proportion of multiclonal isolates as well as multiplicity of infection (MOI) was observed among isolates of highly malarious districts Karbi Anglong (Assam) and Sundergarh (Orissa). In all the five sites, R033 family of <it>msp-1 </it>was observed to be monomorphic with an allele size of 150/160 bp. The observed 80–90% sequence identity of Indian isolates with data of other regions suggests that Indian <it>P. falciparum </it>population is a mixture of different strains.</p> <p>Conclusion</p> <p>The present study shows that the field isolates of eastern and north-eastern regions of India are highly diverse in respect of <it>msp-1 </it>(block 2) and <it>msp-2 </it>(central repeat region, block 3). As expected Indian isolates present a picture of diversity closer to southeast Asia, Papua New Guinea and Latin American countries, regions with low to meso-endemicity of malaria in comparison to African regions of hyper- to holo-endemicity.</p

    The N-Terminal Region of the PA Subunit of the RNA Polymerase of Influenza A/HongKong/156/97 (H5N1) Influences Promoter Binding

    Get PDF
    BACKGROUND: The RNA polymerase of influenza virus is a heterotrimeric complex of PB1, PB2 and PA subunits which cooperate in the transcription and replication of the viral genome. Previous research has shown that the N-terminal region of the PA subunit of influenza A/WSN/33 (H1N1) virus is involved in promoter binding. METHODOLOGY/PRINCIPAL FINDINGS: Here we extend our studies of the influenza RNA polymerase to that of influenza strains A/HongKong/156/97 (H5N1) and A/Vietnam/1194/04 (H5N1). Both H5N1 strains, originally isolated from patients in 1997 and 2004, showed significantly higher polymerase activity compared with two classical human strains, A/WSN/33 (H1N1) and A/NT/60/68 (H3N2) in vitro. This increased polymerase activity correlated with enhanced promoter binding. The N-terminal region of the PA subunit was the major determinant of this enhanced promoter activity. CONCLUSIONS/SIGNIFICANCE: Overall we suggest that the N-terminal region of the PA subunit of two recent H5N1 strains can influence promoter binding and we speculate this may be a factor in their virulence

    Determination of nitric oxide metabolites, nitrate and nitrite, in Anopheles culicifacies mosquito midgut and haemolymph by anion exchange high-performance liquid chromatography: plausible mechanism of refractoriness

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The diverse physiological and pathological role of nitric oxide in innate immune defenses against many intra and extracellular pathogens, have led to the development of various methods for determining nitric oxide (NO) synthesis. NO metabolites, nitrite (NO<sub>2</sub><sup>-</sup>) and nitrate (NO<sub>3</sub><sup>-</sup>) are produced by the action of an inducible <it>Anopheles culicifacies </it>NO synthase (AcNOS) in mosquito mid-guts and may be central to anti-parasitic arsenal of these mosquitoes.</p> <p>Method</p> <p>While exploring a plausible mechanism of refractoriness based on nitric oxide synthase physiology among the sibling species of <it>An. culicifacies</it>, a sensitive, specific and cost effective high performance liquid chromatography (HPLC) method was developed, which is not influenced by the presence of biogenic amines, for the determination of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from mosquito mid-guts and haemolymph.</p> <p>Results</p> <p>This method is based on extraction, efficiency, assay reproducibility and contaminant minimization. It entails de-proteinization by centrifugal ultra filtration through ultracel 3 K filter and analysis by high performance anion exchange liquid chromatography (Sphereclone, 5 μ SAX column) with UV detection at 214 nm. The lower detection limit of the assay procedure is 50 pmoles in all midgut and haemolymph samples. Retention times for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in standards and in mid-gut samples were 3.42 and 4.53 min. respectively. Assay linearity for standards ranged between 50 n<it>M </it>and 1 m<it>M</it>. Recoveries of NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>from spiked samples (1–100 μ<it>M</it>) and from the extracted standards (1–100 μ<it>M</it>) were calculated to be 100%. Intra-assay and inter assay variations and relative standard deviations (RSDs) for NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in spiked and un-spiked midgut samples were 5.7% or less. Increased levels NO<sub>2</sub><sup>- </sup>and NO<sub>3</sub><sup>- </sup>in midguts and haemolymph of <it>An. culicifacies </it>sibling species B in comparison to species A reflect towards a mechanism of refractoriness based on AcNOS physiology.</p> <p>Conclusion</p> <p>HPLC is a sensitive and accurate technique for identification and quantifying pmole levels of NO metabolites in mosquito midguts and haemolymph samples that can be useful for clinical investigations of NO biochemistry, physiology and pharmacology in various biological samples.</p

    Surface profiling of object using varifocal lens with image contrast

    Get PDF
    The measurement of automated and fast focusing on the improvement of speed and accuracy is an important issue in industrial inspection and biomedical microscopy. In this study, we developed a novel optical imaging system in which varifocal lenses are used to characterize the 3D surface topography of samples. The performance of the proposed system was evaluated using twelve focusing algorithms. Experimental results demonstrate the feasibility and effectiveness of the proposed system in the near real-time construction of multi-focus fusion images with large depth of field from which to derive 3D surface profiles

    Influenza Polymerase Activity Correlates with the Strength of Interaction between Nucleoprotein and PB2 through the Host-Specific Residue K/E627

    Get PDF
    The ribonucleoprotein (RNP) complex is the essential transcription-replication machinery of the influenza virus. It is composed of the trimeric polymerase (PA, PB1 and PB2), nucleoprotein (NP) and RNA. Elucidating the molecular mechanisms of RNP assembly is central to our understanding of the control of viral transcription and replication and the dependence of these processes on the host cell. In this report, we show, by RNP reconstitution assays and co-immunoprecipitation, that the interaction between NP and polymerase is crucial for the function of the RNP. The functional association of NP and polymerase involves the C-terminal ‘627’ domain of PB2 and it requires NP arginine-150 and either lysine-627 or arginine-630 of PB2. Using surface plasmon resonance, we demonstrate that the interaction between NP and PB2 takes place without the involvement of RNA. At 33, 37 and 41°C in mammalian cells, more positive charges at aa. 627 and 630 of PB2 lead to stronger NP-polymerase interaction, which directly correlates with the higher RNP activity. In conclusion, our study provides new information on the NP-PB2 interaction and shows that the strength of NP-polymerase interaction and the resulting RNP activity are promoted by the positive charges at aa. 627 and 630 of PB2
    • …
    corecore