21 research outputs found

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Genotyping-by-sequencing supports a genetic basis for wing reduction in an alpine New Zealand stonefly

    Get PDF
    Wing polymorphism is a prominent feature of numerous insect groups, but the genomic basis for this diversity remains poorly understood. Wing reduction is a commonly observed trait in many species of stonefies, particularly in cold or alpine environments. The widespread New Zealand stonefy Zelandoperla fenestrata species group (Z. fenestrata, Z. tillyardi, Z. pennulata) contains populations ranging from fully winged (macropterous) to vestigial-winged (micropterous), with the latter phenotype typically associated with high altitudes. The presence of fightless forms on numerous mountain ranges, separated by lowland fully winged populations, suggests wing reduction has occurred multiple times. We use Genotyping by Sequencing (GBS) to test for genetic diferentiation between fully winged (n=62) and vestigial-winged (n=34) individuals, sampled from a sympatric population of distinct wing morphotypes, to test for a genetic basis for wing morphology. While we found no population genetic diferentiation between these two morphotypes across 6,843 SNP loci, we did detect several outlier loci that strongly diferentiated morphotypes across independent tests. These fndings indicate that small regions of the genome are likely to be highly diferentiated between morphotypes, suggesting a genetic basis for wing reduction. Our results provide a clear basis for ongoing genomic analysis to elucidate critical regulatory pathways for wing development in Pterygota
    corecore