70 research outputs found

    Contrasting cellular uptake pathways for chlorido and iodido iminopyridine ruthenium arene anticancer complexes

    Get PDF
    The pathways involved in cellular uptake and accumulation of iminopyridine complexes of general formula [Ru(η6-p-cymene)(N,N-dimethyl-N′-[(E)-pyridine-2-ylmethylidene]benzene-1,4-diamine)X]PF6 bearing two different halido ligands X = Cl or I, have been explored. The ratio of passive/active cellular accumulation of Ru in A2780 human ovarian cancer cells is compared and contrasted with cisplatin. Also, saturation of cellular uptake, time-dependence of cellular influx/efflux equilibria, together with endocytotic pathways such as caveolae and facilitated diffusion are investigated and discussed. Temperature dependence studies of Ru accumulation in the A2780 cells show that in contrast to cisplatin (CDDP) and chlorido complex 1, which are taken up largely through active transport, the iodido complex 2 enters cells via passive transport. The cellular efflux of Ru is slow (ca. 25% retained after 72 h) and is partially inhibited by verapamil, implicating the P-gp protein in the efflux mechanism. Ouabain inhibition experiments suggest that the cellular uptake of these ruthenium complexes relies at least in part on facilitated diffusion, and in particular is dependent on the membrane potential. In addition the finding that depletion of cellular ATP with antimycin A had little effect on cellular Ru accumulation from iodido complex 2 is consistent with passive diffusion. In contrast, ATP depletion caused a major increase in cellular accumulation of ruthenium from chlorido complex 1

    Lipid-dependent gating of a voltage-gated potassium channel

    Get PDF
    Recent studies hypothesized that phospholipids stabilize two voltage-sensing arginine residues of certain voltage-gated potassium channels in activated conformations. It remains unclear how lipids directly affect these channels. Here, by examining the conformations of the KvAP in different lipids, we showed that without voltage change, the voltage-sensor domains switched from the activated to the resting state when their surrounding lipids were changed from phospholipids to nonphospholipids. Such lipid-determined conformational change was coupled to the ion-conducting pore, suggesting that parallel to voltage gating, the channel is gated by its annular lipids. Our measurements recognized that the energetic cost of lipid-dependent gating approaches that of voltage gating, but kinetically it appears much slower. Our data support that a channel and its surrounding lipids together constitute a functional unit, and natural nonphospholipids such as cholesterol should exert strong effects on voltage-gated channels. Our first observation of lipid-dependent gating may have general implications to other membrane proteins

    Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes

    Get PDF
    BACKGROUND: Data are lacking on the long-term effect on cardiovascular events of adding sitagliptin, a dipeptidyl peptidase 4 inhibitor, to usual care in patients with type 2 diabetes and cardiovascular disease. METHODS: In this randomized, double-blind study, we assigned 14,671 patients to add either sitagliptin or placebo to their existing therapy. Open-label use of antihyperglycemic therapy was encouraged as required, aimed at reaching individually appropriate glycemic targets in all patients. To determine whether sitagliptin was noninferior to placebo, we used a relative risk of 1.3 as the marginal upper boundary. The primary cardiovascular outcome was a composite of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for unstable angina. RESULTS: During a median follow-up of 3.0 years, there was a small difference in glycated hemoglobin levels (least-squares mean difference for sitagliptin vs. placebo, -0.29 percentage points; 95% confidence interval [CI], -0.32 to -0.27). Overall, the primary outcome occurred in 839 patients in the sitagliptin group (11.4%; 4.06 per 100 person-years) and 851 patients in the placebo group (11.6%; 4.17 per 100 person-years). Sitagliptin was noninferior to placebo for the primary composite cardiovascular outcome (hazard ratio, 0.98; 95% CI, 0.88 to 1.09; P<0.001). Rates of hospitalization for heart failure did not differ between the two groups (hazard ratio, 1.00; 95% CI, 0.83 to 1.20; P = 0.98). There were no significant between-group differences in rates of acute pancreatitis (P = 0.07) or pancreatic cancer (P = 0.32). CONCLUSIONS: Among patients with type 2 diabetes and established cardiovascular disease, adding sitagliptin to usual care did not appear to increase the risk of major adverse cardiovascular events, hospitalization for heart failure, or other adverse events

    Structure, Function, and Modification of the Voltage Sensor in Voltage-Gated Ion Channels

    Full text link
    • …
    corecore