32 research outputs found

    Enhanced inhibition of Avian leukosis virus subgroup J replication by multi-target miRNAs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian leukosis virus (ALV) is a major infectious disease that impacts the poultry industry worldwide. Despite intensive efforts, no effective vaccine has been developed against ALV because of mutations that lead to resistant forms. Therefore, there is a dire need to develop antiviral agents for the treatment of ALV infections and RNA interference (RNAi) is considered an effective antiviral strategy.</p> <p>Results</p> <p>In this study, the avian leukosis virus subgroup J (ALV-J) proviral genome, including the <it>gag </it>genes, were treated as targets for RNAi. Four pairs of miRNA sequences were designed and synthesized that targeted different regions of the <it>gag </it>gene. The screened target (i.e., the <it>gag </it>genes) was shown to effectively suppress the replication of ALV-J by 19.0-77.3%. To avoid the generation of escape variants during virus infection, expression vectors of multi-target miRNAs were constructed using the multi-target serial strategy (against different regions of the <it>gag</it>, <it>pol</it>, and <it>env </it>genes). Multi-target miRNAs were shown to play a synergistic role in the inhibition of ALV-J replication, with an inhibition efficiency of viral replication ranging from 85.0-91.2%.</p> <p>Conclusion</p> <p>The strategy of multi-target miRNAs might be an effective method for inhibiting ALV replication and the acquisition of resistant mutations.</p

    miR-125b Promotes Early Germ Layer Specification through Lin28/let-7d and Preferential Differentiation of Mesoderm in Human Embryonic Stem Cells

    Get PDF
    Unlike other essential organs, the heart does not undergo tissue repair following injury. Human embryonic stem cells (hESCs) grow indefinitely in culture while maintaining the ability to differentiate into many tissues of the body. As such, they provide a unique opportunity to explore the mechanisms that control human tissue development, as well as treat diseases characterized by tissue loss, including heart failure. MicroRNAs are small, non-coding RNAs that are known to play critical roles in the regulation of gene expression. We profiled the expression of microRNAs during hESC differentiation into myocardial precursors and cardiomyocytes (CMs), and determined clusters of human microRNAs that are specifically regulated during this process. We determined that miR-125b overexpression results in upregulation of the early cardiac transcription factors, GATA4 and Nkx2-5, and accelerated progression of hESC-derived myocardial precursors to an embryonic CM phenotype. We used an in silico approach to identify Lin28 as a target of miR-125b, and validated this interaction using miR-125b knockdown. Anti-miR-125b inhibitor experiments also showed that miR-125b controls the expression of miRNA let-7d, likely through the negative regulatory effects of Lin28 on let-7. We then determined that miR-125b overexpression inhibits the expression of Nanog and Oct4 and promotes the onset of Brachyury expression, suggesting that miR-125b controls the early events of human CM differentiation by inhibiting hESC pluripotency and promoting mesodermal differentiation. These studies identified miR-125b as an important regulator of hESC differentiation in general, and the development of hESC-derived mesoderm and cardiac muscle in particular. Manipulation of miR-125b-mediated pathways may provide a novel approach to directing the differentiation of hESC-derived CMs for cell therapy applications

    Combinatorial Binding in Human and Mouse Embryonic Stem Cells Identifies Conserved Enhancers Active in Early Embryonic Development

    Get PDF
    Transcription factors are proteins that regulate gene expression by binding to cis-regulatory sequences such as promoters and enhancers. In embryonic stem (ES) cells, binding of the transcription factors OCT4, SOX2 and NANOG is essential to maintain the capacity of the cells to differentiate into any cell type of the developing embryo. It is known that transcription factors interact to regulate gene expression. In this study we show that combinatorial binding is strongly associated with co-localization of the transcriptional co-activator Mediator, H3K27ac and increased expression of nearby genes in embryonic stem cells. We observe that the same loci bound by Oct4, Nanog and Sox2 in ES cells frequently drive expression in early embryonic development. Comparison of mouse and human ES cells shows that less than 5% of individual binding events for OCT4, SOX2 and NANOG are shared between species. In contrast, about 15% of combinatorial binding events and even between 53% and 63% of combinatorial binding events at enhancers active in early development are conserved. Our analysis suggests that the combination of OCT4, SOX2 and NANOG binding is critical for transcription in ES cells and likely plays an important role for embryogenesis by binding at conserved early developmental enhancers. Our data suggests that the fast evolutionary rewiring of regulatory networks mainly affects individual binding events, whereas “gene regulatory hotspots” which are bound by multiple factors and active in multiple tissues throughout early development are under stronger evolutionary constraints

    Computational analysis of expression of human embryonic stem cell-associated signatures in tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p
    corecore