78 research outputs found

    The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model

    Get PDF
    Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry S4S_4 that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can reproduce the quark masses and the CKM matrix. In the lepton sector, we reproduce the charged lepton masses, including bottom-tau unification and the Georgi-Jarlskog relation as well as the two known angles of the PMNS matrix. The neutrino mass spectrum can present a normal or an inverse hierarchy, and only allowing the neutrino parameters to spread into a range of values between λ2\lambda^{-2} and λ2\lambda^2, with λ0.2\lambda\simeq0.2. Finally, our model suggests that the reactor mixing angle is close to its current experimental bound.Comment: 62 pages, 4 figures; references added, version accepted for publication in JHE

    Models of Neutrino Masses and Mixings

    Full text link
    We review theoretical ideas, problems and implications of neutrino masses and mixing angles. We give a general discussion of schemes with three light neutrinos. Several specific examples are analyzed in some detail, particularly those that can be embedded into grand unified theories.Comment: 44 pages, 2 figures, version accepted for publication on the Focus Issue on 'Neutrino Physics' edited by F.Halzen, M.Lindner and A. Suzuki, to be published in New Journal of Physics

    MtSNPscore: a combined evidence approach for assessing cumulative impact of mitochondrial variations in disease

    Get PDF
    Human mitochondrial DNA (mtDNA) variations have been implicated in a broad spectrum of diseases. With over 3000 mtDNA variations reported across databases, establishing pathogenicity of variations in mtDNA is a major challenge. We have designed and developed a comprehensive weighted scoring system (MtSNPscore) for identification of mtDNA variations that can impact pathogenicity and would likely be associated with disease. The criteria for pathogenicity include information available in the literature, predictions made by various in silico tools and frequency of variation in normal and patient datasets. The scoring scheme also assigns scores to patients and normal individuals to estimate the cumulative impact of variations. The method has been implemented in an automated pipeline and has been tested on Indian ataxia dataset (92 individuals), sequenced in this study, and other publicly available mtSNP dataset comprising of 576 mitochondrial genomes of Japanese individuals from six different groups, namely, patients with Parkinson's disease, patients with Alzheimer's disease, young obese males, young non-obese males, and type-2 diabetes patients with or without severe vascular involvement. MtSNPscore, for analysis can extract information from variation data or from mitochondrial DNA sequences. It has a web-interface http://bioinformatics.ccmb.res.in/cgi-bin/snpscore/Mtsnpscore.pl webcite that provides flexibility to update/modify the parameters for estimating pathogenicity

    Cellular differentiation determines the expression of the hypoxia-inducible protein NDRG1 in pancreatic cancer

    Get PDF
    N-myc downstream-regulated gene-1 (NDRG1) is a recently described hypoxia-inducible protein that is upregulated in various human cancers. Pancreatic ductal adenocarcinoma, called pancreatic cancer, is a highly aggressive cancer that is characterised by its avascular structure, which results in a severe hypoxic environment. In this study, we investigated whether NDRG1 is upregulated in these tumours, thus providing a novel marker for malignant cells in the pancreas. By immunohistochemistry, we observed that NDRG1 was highly expressed in well-differentiated cells of pancreatic cancer, whereas the poorly differentiated tumour cells were negative. In addition, hyperplastic islets and ducts of nonquiescent pancreatic tissue were positive. To further explore its selective expression in tumours, two well-established pancreatic cancer cell lines of unequal differentiation status were exposed to 2% oxygen. NDRG1 mRNA and protein were upregulated by hypoxia in the moderately differentiated Capan-1 cells; however, its levels remained unchanged in the poorly differentiated Panc-1 cell line. Taken together, our data suggest that NDRG1 will not serve as a reliable marker of tumour cells in the pancreas, but may serve as a marker of differentiation. Furthermore, we present the novel finding that cellular differentiation may be an important factor that determines the hypoxia-induced regulation of NDRG1

    Structural Annotation of Mycobacterium tuberculosis Proteome

    Get PDF
    Of the ∼4000 ORFs identified through the genome sequence of Mycobacterium tuberculosis (TB) H37Rv, experimentally determined structures are available for 312. Since knowledge of protein structures is essential to obtain a high-resolution understanding of the underlying biology, we seek to obtain a structural annotation for the genome, using computational methods. Structural models were obtained and validated for ∼2877 ORFs, covering ∼70% of the genome. Functional annotation of each protein was based on fold-based functional assignments and a novel binding site based ligand association. New algorithms for binding site detection and genome scale binding site comparison at the structural level, recently reported from the laboratory, were utilized. Besides these, the annotation covers detection of various sequence and sub-structural motifs and quaternary structure predictions based on the corresponding templates. The study provides an opportunity to obtain a global perspective of the fold distribution in the genome. The annotation indicates that cellular metabolism can be achieved with only 219 folds. New insights about the folds that predominate in the genome, as well as the fold-combinations that make up multi-domain proteins are also obtained. 1728 binding pockets have been associated with ligands through binding site identification and sub-structure similarity analyses. The resource (http://proline.physics.iisc.ernet.in/Tbstructuralannotation), being one of the first to be based on structure-derived functional annotations at a genome scale, is expected to be useful for better understanding of TB and for application in drug discovery. The reported annotation pipeline is fairly generic and can be applied to other genomes as well

    Interaction of the chromatin remodeling protein hINO80 with DNA

    Get PDF
    The presence of a highly conserved DNA binding domain in INO80 subfamily predicted that INO80 directly interacts with DNA and we demonstrated its DNA binding activity in vitro. Here we report the consensus motif recognized by the DBINO domain identified by SELEX method and demonstrate the specific interaction of INO80 with the consensus motif. We show that INO80 significantly down regulates the reporter gene expression through its binding motif, and the repression is dependent on the presence of INO80 but not YY1 in the cell. The interaction is lost if specific residues within the consensus motif are altered. We identify a large number of potential target sites of INO80 in the human genome through in silico analysis that can grouped into three classes; sites that contain the recognition sequence for INO80 and YY1, only YY1 and only INO80. We demonstrate the binding of INO80 to a representative set of sites in HEK cells and the correlated repressive histone modifications around the binding motif. In the light of the role of INO80 in homeotic gene regulation in Drosophila as an Enhancer of trithorax and polycomb protein (ETP) that can modify the effect of both repressive complexes like polycomb as well as the activating complex like trithorax, it remains to be seen if INO80 can act as a recruiter of chromatin modifying complexes

    Mapping human genetic diversity in Asia

    Get PDF
    Asia harbors substantial cultural and linguistic diversity, but the geographic structure of genetic variation across the continent remains enigmatic. Here we report a large-scale survey of autosomal variation from a broad geographic sample of Asian human populations. Our results show that genetic ancestry is strongly correlated with linguistic affiliations as well as geography. Most populations show relatedness within ethnic/linguistic groups, despite prevalent gene flow among populations. More than 90% of East Asian (EA) haplotypes could be found in either Southeast Asian (SEA) or Central-South Asian (CSA) populations and show clinal structure with haplotype diversity decreasing from south to north. Furthermore, 50% of EA haplotypes were found in SEA only and 5% were found in CSA only, indicating that SEA was a major geographic source of EA populations

    Analysis of CAG/CTG triplet repeats in the human genome: Implication in transcription factor gene regulation

    No full text
    Instability and polymorphism at several CAG/CTG trinucleotide repeat loci have been associated with human genetic disorders. In an attempt to identify novel sites that may be possible loci for expansion of CAG/CTG repeats, we searched all human sequences in the EMBL nucleotide sequence database for (CAG)(5) and (CTG)(5) repeats. We have identified 121 human DNA sequences of known and unknown functions that contain stretches of five or more CAG or CTG repeats. Many repeat stretches were interrupted by variant triplets, a significant number of which differ from the repeat triplet only by a single base, suggesting that these evolved from the parent triplet by point mutations. A large number of human transcription factor genes mere found to contain CAG repeats within their coding sequences. Analysis of the EMBL transcription factors database showed that many transcription factor genes of other eukaryotes, including genes involved in Drosophila embryo development, possess these repeats. Interestingly, CAG repeats are absent from prokaryotic transcription factors. Different sequence entries for the human TATA box binding protein showed a polymorphism in the length of the CAG repeat in this gene, suggesting that loci other than those already known to be associated with genetic diseases may be possible sites for repeat instability related disorders. On the basis of our findings in this database analysis, we propose a role for CAG repeats as cis-acting regulatory elements involved in fine-tuning gene expression

    Structural alteration from non-B to B-form could reflect DNase I hypersensitivity

    No full text
    Preferential cleavage of active genes by DNase I has been correlated with a structurally altered conformation of DNA at the hypersensitive site in chromatin. To have a better understanding of the structural requirements for gene activation as probed by DNase I action, digestability by DNase I of synthetic polynucleotides having the ability to adopt B and non-B conformation (like Z-form) was studied which indicated a marked higher digestability of the B-form of DNA. Left handed Z form present within a natural sequence in supercoiled plasmid also showed marked resistance towards DNase I digestion. We show that alternating purine-pyrimidine sequences adopting Z-conformation exhibit DNAse I foot printing even in a protein free system. The logical deductions from the results indicate that 1) altered structure like Z-DNA is not a favourable substrate for DNase I, 2) both the ends of the alternating purine-pyrimidine insert showed hypersensitivity, 3) B-form with a minor groove of 12-13 A is a more favourable substrate for DNase I than an altered structure, 4) any structure of DNA deviating largely from B form with a capacity to flip over to the B-form are potential targets for the DNase I enzymic probes in naked DNA
    corecore