57 research outputs found

    cGAL, a temperature-robust GAL4–UAS system for Caenorhabditis elegans

    Get PDF
    The GAL4–UAS system is a powerful tool for manipulating gene expression, but its application in Caenorhabditis elegans has not been described. Here we systematically optimize the system's three main components to develop a temperature-optimized GAL4–UAS system (cGAL) that robustly controls gene expression in C. elegans from 15 to 25 Β°C. We demonstrate this system's utility in transcriptional reporter analysis, site-of-action experiments and exogenous transgene expression; and we provide a basic driver and effector toolkit

    A novel diffuse large B-cell lymphoma-associated cancer testis antigen encoding a PAS domain protein

    Get PDF
    Here we report that the OX-TES-1 SEREX antigen, which showed immunological reactivity with serum from four out of 10 diffuse large B-cell lymphoma (DLBCL) patients, is encoded by a novel gene, PAS domain containing 1 (PASD1). PASD1_v1 cDNA encodes a 639 amino-acid (aa) protein product, while an alternatively spliced variant (PASD1_v2), lacking intron 14, encodes a 773 aa protein, the first 638 aa of which are common to both proteins. The PASD1-predicted protein contains a PAS domain that, together with a putative leucine zipper and nuclear localisation signal, suggests it encodes a transcription factor. The expression of PASD1_v1 mRNA was confirmed by RT-PCR in seven DLBCL-derived cell lines, while PASD1_v2 mRNA appears to be preferentially expressed in cell lines derived from non-germinal centre DLBCL. Immunophenotyping studies of de novo DLBCL patients' tumours with antibodies to CD10, BCL-6 and MUM1 indicated that two patients mounting an immune response to PASD1 were of a poor prognosis non-germinal centre subtype. Expression of PASD1 mRNA was restricted to normal testis, while frequent expression was observed in solid tumours (25 out of 68), thus fulfilling the criteria for a novel cancer testis antigen. PASD1 has potential for lymphoma vaccine development that may also be widely applicable to other tumour types

    An In Vitro System for Studying Murid Herpesvirus-4 Latency and Reactivation

    Get PDF
    The narrow species tropisms of Epstein-Barr Virus (EBV) and the Kaposi's Sarcoma -associated Herpesvirus (KSHV) have made Murid Herpesvirus-4 (MuHV-4) an important tool for understanding how gammaherpesviruses colonize their hosts. However, while MuHV-4 pathogenesis studies can assign a quantitative importance to individual genes, the complexity of in vivo infection can make the underlying mechanisms hard to discern. Furthermore, the lack of good in vitro MuHV-4 latency/reactivation systems with which to dissect mechanisms at the cellular level has made some parallels with EBV and KSHV hard to draw. Here we achieved control of the MuHV-4 lytic/latent switch in vitro by modifying the 5β€² untranslated region of its major lytic transactivator gene, ORF50. We terminated normal ORF50 transcripts by inserting a polyadenylation signal and transcribed ORF50 instead from a down-stream, doxycycline-inducible promoter. In this way we could establish fibroblast clones that maintained latent MuHV-4 episomes without detectable lytic replication. Productive virus reactivation was then induced with doxycycline. We used this system to show that the MuHV-4 K3 gene plays a significant role in protecting reactivating cells against CD8+ T cell recognition

    Zinc Coordination Is Required for and Regulates Transcription Activation by Epstein-Barr Nuclear Antigen 1

    Get PDF
    Epstein-Barr Nuclear Antigen 1 (EBNA1) is essential for Epstein-Barr virus to immortalize naΓ―ve B-cells. Upon binding a cluster of 20 cognate binding-sites termed the family of repeats, EBNA1 transactivates promoters for EBV genes that are required for immortalization. A small domain, termed UR1, that is 25 amino-acids in length, has been identified previously as essential for EBNA1 to activate transcription. In this study, we have elucidated how UR1 contributes to EBNA1's ability to transactivate. We show that zinc is necessary for EBNA1 to activate transcription, and that UR1 coordinates zinc through a pair of essential cysteines contained within it. UR1 dimerizes upon coordinating zinc, indicating that EBNA1 contains a second dimerization interface in its amino-terminus. There is a strong correlation between UR1-mediated dimerization and EBNA1's ability to transactivate cooperatively. Point mutants of EBNA1 that disrupt zinc coordination also prevent self-association, and do not activate transcription cooperatively. Further, we demonstrate that UR1 acts as a molecular sensor that regulates the ability of EBNA1 to activate transcription in response to changes in redox and oxygen partial pressure (pO2). Mild oxidative stress mimicking such environmental changes decreases EBNA1-dependent transcription in a lymphoblastoid cell-line. Coincident with a reduction in EBNA1-dependent transcription, reductions are observed in EBNA2 and LMP1 protein levels. Although these changes do not affect LCL survival, treated cells accumulate in G0/G1. These findings are discussed in the context of EBV latency in body compartments that differ strikingly in their pO2 and redox potential

    Mechanisms of viral activators.

    No full text
    Adenovirus large E1A, Epstein-Barr virus Zebra, and herpes simplex virus VP16 were studied as models of animal cell transcriptional activators. Large E1A can activate transcription from a TATA box, a result that leads us to suggest that it interacts with a general transcription factor. Initial studies showed that large E1A binds directly to the TBP subunit of TFIID. However, analysis of multiple E1A and TBP mutants failed to support the significance of this in vitro interaction for the mechanism of activation. Recent studies to be reported elsewhere indicate that conserved region 3 of large E1A, which is required for its activation function, binds to one subunit of a multisubunit protein that stimulates in vitro transcription in response to large E1A and other activators. A method was developed for the rapid purification of TFIID approximately 25,000-fold to near homogeneity from a cell line engineered to express an epitope-tagged form of TBP. Purified TFIID contains 11 major TAFs ranging in mass from approximately 250 to 20 kD. Zta and VP16, but not large E1A, greatly stimulate the rate and extent of assembly of a TFIID-TFIIA complex on promoter DNA (DA complex). For VP16, this is a function of the carboxy-terminal activation subdomain. An excellent correlation was found between the ability of VP16C mutants to stimulate DA complex assembly and their ability to activate transcription in vivo. Consequently, for a subset of activation domains, DA complex assembly activity is an important component of the overall mechanism of activation

    Activators and targets

    No full text
    Proteins that activate genes are quite disparate in character; in particular, some work 'universally' and others do not. A simple model can accommodate most of the recently published results
    • …
    corecore