40 research outputs found

    Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota)

    Get PDF
    Compared to the higher fungi (Dikarya), taxonomic and evolutionary studies on the basal clades of fungi are fewer in number. Thus, the generic boundaries and higher ranks in the basal clades of fungi are poorly known. Recent DNA based taxonomic studies have provided reliable and accurate information. It is therefore necessary to compile all available information since basal clades genera lack updated checklists or outlines. Recently, Tedersoo et al. (MycoKeys 13:1--20, 2016) accepted Aphelidiomycota and Rozellomycota in Fungal clade. Thus, we regard both these phyla as members in Kingdom Fungi. We accept 16 phyla in basal clades viz. Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. Thus, 611 genera in 153 families, 43 orders and 18 classes are provided with details of classification, synonyms, life modes, distribution, recent literature and genomic data. Moreover, Catenariaceae Couch is proposed to be conserved, Cladochytriales Mozl.-Standr. is emended and the family Nephridiophagaceae is introduced

    Cotrimoxazole/mycophenolate mofetil

    No full text

    Emerging resistant serotypes of invasive Streptococcus pneumoniae

    No full text
    Sittana Elshafie,1,2 Saad J Taj-Aldeen2,3 1Qatar Orthopedic and Sports Medicine Hospital, Aspetar, Doha, Qatar; 2Weill Cornell Medicine-Qatar, 3Department of Laboratory Medicine and Pathology, Microbiology Division, Hamad Medical Corporation, Doha, Qatar Background: Streptococcus pneumoniae is the leading cause of meningitis and sepsis. The aim of the study was to analyze the distribution, vaccine serotype coverage, and antibiotic resistance of S. pneumoniae serotypes isolated from patients with invasive diseases, after the introduction of pneumococcal 7-valent conjugated vaccine (PCV-7). Methods: A total of 134 isolates were collected from blood and cerebrospinal fluid specimens at Hamad Hospital during the period from 2005 to 2009. Isolate serotyping was done using the Quellung reaction. The prevaccination period was considered before 2005. Results: The most common serotypes for all age groups were 3 (12.70%), 14 (11.90%), 1 (11.90%), 19A (9.00%), 9V (5.20%), 23F (5.20%), and 19F (4.50%). Coverage rates for infant <2 years for PCV-7, the 10-valent conjugated vaccine (PCV-10), and the 13-valent conjugated vaccine (PCV-13) were 34.78%, 52.17%, and 78.26%, respectively. Coverage rates of these vaccines were 50%, 67.86%, and 75% for the 2–5 years age group; 27.12%, 40.68%, and 64.41% for the age group 6–64 years; and 25%, 33.33%, and 66.67% for the ≥65 years age group, respectively. The percentage of nonsusceptible isolates to penicillin, cefotaxime, and erythromycin were 43.86%, 16.66%, and 22.81%, respectively. Thirty-seven isolates (32.46%) were multidrug resistant (MDR) and belonged to serotypes 14, 19A, 19F, 23F, 1, 9V, 12F, 4, 6B, 3, and 15A. Compared to previous results before the introduction of PCV-7, there was a significant reduction in penicillin-nonsusceptable S. pneumoniae from 66.67% to 43.86%, and a slight insignificant reduction in erythromycin nonsusceptible strains from 27.60% to 22.8%, while there was a significant increase in cefotaxime nonsusceptible strains from 3.55% to 16.66%. Conclusion: Invasive pneumococcal strains and the emergence of MDR serotypes is a global burden that must be addressed through multiple strategies, including vaccination, antibiotic stewardship, and continuous surveillance. Keywords: Streptococcus pneumoniae, Qatar, vaccine, serotype distribution, antibiotic resistanc

    Discrepancy in MALDI-TOF MS identification of uncommon Gram-negative bacteria from lower respiratory secretions in patients with cystic fibrosis

    No full text
    Atqah AbdulWahab,1,2 Saad J Taj-Aldeen,3 Emad Bashir Ibrahim,3 Eman Talaq,4 Marawan Abu-Madi,4 Rashmi Fotedar5 1Department of Pediatrics, Hamad Medical Corporation, Doha, Qatar; 2Department of Pediatrics, Weill Cornell Medical College, Doha, Qatar; 3Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, Doha, Qatar; 4Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar; 5Biotechnology Center, Ministry of Environment, Doha, Qatar Introduction: Early identification of microbial organisms from respiratory secretions of patients with cystic fibrosis (CF) is important to guide therapeutic decisions. The objective was to compare the accuracy of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) relative to the conventional phenotypic method in identifying common bacterial isolates, including nonfermenting Gram-negative bacteria, in a cohort of patients with CF. Methods: A total of 123 isolates from 50 patients with CF representing 14 bacterial species from respiratory specimens were identified using MALDI-TOF MS in parallel with conventional phenotypic methods. Discrepancies were confirmed by 16S ribosomal RNA (rRNA) gene sequencing in five Gram-negative isolates. Results: The MALDI-TOF MS managed to identify 122/123 (99.2%) bacterial isolates to the genus level and 118/123 (95.9%) were identified to the species level. The MALDI-TOF MS results were 100% consistent to the species level with conventional phenotypic identification for isolates of Staphylococcus aureus, Pseudomonas aeruginosa, Haemophilus influenzae, Streptococcus pyogenes, Achromobacter xylosoxidans, Stenotrophomonas maltophilia, and other uncommon organisms such as Chryseobacterium gleum and Enterobacter cloacae. The 5/123 (4.6%) isolates misidentified were all Gram-negative bacteria. The isolation of E. cloacae and Haemophilus paraphrohaemolyticus may extend the potentially pathogenic list of organisms isolated from patients with CF. Conclusion: Although the technique provides an early identification and antimicrobial therapy approach in patients with CF, limitation in the diagnosis of uncommon Gram-negative bacteria may exist. Keywords: cystic fibrosis, MALDI-TOF MS, bacteria, respiratory secretions, molecular identification&nbsp

    Genetic relatedness and host specificity of Pseudomonas aeruginosa isolates from cystic fibrosis and non-cystic fibrosis patients

    No full text
    Atqah AbdulWahab,1 Saad J Taj-Aldeen,2 Emad Ibrahim,2 Shaikha H Abdulla,3 Ramees Muhammed,3 Irshad Ahmed,3 Yasmine Abdeen,4 Omnia Sadek,4 Marawan Abu-Madi4 1Department of Pediatrics, Hamad Medical Corporation, 2Microbiology Division, Department of Laboratory Medicine and Pathology, Hamad Medical Corporation, 3Molecular Biology Unit, Central Food Laboratories, Supreme Council of Health, 4Department of Health Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar Background: Pseudomonas aeruginosa is one of the primary pathogens isolated more frequently in cystic fibrosis (CF) and it exhibits innate resistance to a wide range of antibiotics. Purpose: We sought to determine whether the highly prevalent genotypes of P. aeruginosa are specifically linked to CF patients and have any related multidrug antibiotic resistance. Isolates from hospitalized non-CF patients and from environmental sources were also genotypically analyzed. Methods: Collections of P. aeruginosa from lower respiratory secretions (n=45) were genotyped using pulsed-field gel electrophoresis (PFGE). Phenotypic screening for antibiotic susceptibility was performed for the common antimicrobial agents by E-test and automated Phoenix method. Results: P. aeruginosa isolates from CF (n=32), hospitalized non-CF patients (n=13), and environment sources (n=5) were analyzed. The population structure of P. aeruginosa is highly diverse and population-specific. All PFGE results of P. aeruginosa isolates fall among four major clusters. Cluster 1 contained 16 P. aeruginosa isolates from CF patients and two from environmental sources; cluster 2 contained 11 P. aeruginosa isolates from CF and one each from non-CF and environmental sources; cluster 3 contained 12 P. aeruginosa isolates from hospitalized non-CF patients and two P. aeruginosa isolates from one CF patient and one environmental source; and cluster 4 consisted of three isolates from CF patients and one from the environment. The majority of multidrug-resistant P. aeruginosa isolates were in clusters 3 and 4. P. aeruginosa isolates from CF patients were resistant to ciprofloxacin (34.4%) followed by resistance to amikacin and gentamicin (each 28%), whereas the majority of isolates from non-CF patients were resistant to meropenem (69%) and were grouped in cluster 3. Conclusion: PFGE of P. aeruginosa isolates from CF patients shows a high degree of similarity, suggesting specific adaptation of these clones to CF-affected lungs. The hospitalized non-CF cluster has a different clonal origin, indicating specific clustering in a specific location, suggesting hospital-acquired P. aeruginosa infections. Keywords: cystic fibrosis, drug susceptibility testing, Pseudomonas aeruginosa, pulsed-field gel electrophoresi

    Systemic Phaeohyphomycosis due to Exophiala (Wangiella) in an Immunocompetent Child

    No full text
    We report a rare case of systemic lymphadenitis and hepatic involvement due to Exophiala (Wangiella) dermatitidis in a pediatric patient. An 8-year-old immunocompetent boy with chronic fever was examined through the use of sonography and CT scan which demonstrated cervical and mesenteric lymph node enlargement and numerous small hepatic lesions. The etiologic agent was isolated by means of lymph node aspiration. The fungus was identified by its morphological characteristics and through DNA sequencing of the internal transcribed spacer region of rDNA. Despite initial amphotericin B and voriconazole therapy, the child's jaundice subsided and he died 7 months later. In addition to pathogenic aspects of Exophiala dermatitidis, the diagnostic approaches and relevant therapeutic strategies are discussed.WoSScopu
    corecore