174 research outputs found

    A new dawn for industrial photosynthesis

    Get PDF
    Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals

    Acidithiobacillus

    Get PDF
    A.ci.di.thi.o.ba.cil'lus. L. masc. adj. acidus sour, tart; Gr. neut. n. theîon sulfur, brimstone (transliterated to L. neut. n. thium); L. masc. n. bacillus a short rod, a short wand; N.L. masc. n. Acidithiobacillus acid‐loving sulfur rodlet. Proteobacteria / Acidithiobacillia / Acidithiobacillales / Acidithiobacillaceae / Acidithiobacillus Cells are short, motile rods with a single polar flagellum. Some strains have an obvious glycocalyx. Gram‐stain‐negative. Endospores, exospores, and cysts are not produced. Obligate chemolithoautotrophs, with electron donors including reduced inorganic sulfur species such as thiosulfate, tetrathionate, and elementary sulfur (viz. α‐S8 and μ‐S∞). Some species can also use molecular hydrogen, ferrous iron, or metal sulfides such as pyrite (FeS2) as electron donors. Some species are diazotrophic. Heterotrophy, methylotrophy, and the so‐called C1 autotrophy are not observed. Carbon assimilated from CO2 via the transaldolase variant of the Calvin–Benson–Bassham cycle. Carboxysomes are used for CO2 concentration. Obligately respiratory, with molecular oxygen, ferric iron, or elementary sulfur as terminal electron acceptors, varying by species. Most strains grow in the range of 20–37°C, though some have a narrower range, and one species is thermophilic. Optimal growth from pH 2.0 to 5.8 and an overall range of pH −0.6 to 6.0. The major respiratory quinone is ubiquinone‐8 (UQ‐8), and traces of ubiquinone‐9 (UQ‐9), ubiquinone‐7 (UQ‐7), and menaquinones (MK) are found in some species. The dominant fatty acids are palmitic acid (C16:0), vaccenic acid (C18:1), cis‐11‐cyclopropyl‐nonadecanoic acid (C19:0 cyclo ω8c), palmitoleic acid (C16:1), myristic acid (C14:0), and lauric acid (C12:0). The dominant polar lipids are cardiolipin, aminolipids, phospholipid, phosphatidylglycerol, and phosphatidylethanolamine. The G + C fraction of genomic DNA is around 52.0–63.9 mol%. Form IAc (carboxysomal) and Form II (cytoplasmic) d‐ribulose 1,5‐bisphosphate carboxylase/oxygenase are used, as are forms bo 3 and bd‐I ubiquinol oxidases and, in the iron‐oxidizing species, the aa 3‐type cytochrome c oxidase. A description of Acidithiobacillus concretivorus comb. nov. is also given. DNA G + C content (mol%): 52.0–63.9. Type species: Acidithiobacillus thiooxidans Kelly and Wood 2000VP (Thiobacillus thiooxidans Waksman and Joffe 1922AL)

    Microbial Maintenance: A Critical Review on Its Quantification

    Get PDF
    Microbial maintenance is an important concept in microbiology. Its quantification, however, is a subject of continuous debate, which seems to be caused by (1) its definition, which includes nongrowth components other than maintenance; (2) the existence of partly overlapping concepts; (3) the evolution of variables as constants; and (4) the neglect of cell death in microbial dynamics. The two historically most important parameters describing maintenance, the specific maintenance rate and the maintenance coefficient, are based on partly different nongrowth components. There is thus no constant relation between these parameters and previous equations on this subject are wrong. In addition, the partial overlap between these parameters does not allow the use of a simple combination of these parameters. This also applies for combinations of a threshold concentration with one of the other estimates of maintenance. Maintenance estimates should ideally explicitly describe each nongrowth component. A conceptual model is introduced that describes their relative importance and reconciles the various concepts and definitions. The sensitivity of maintenance on underlying components was analyzed and indicated that overall maintenance depends nonlinearly on relative death rates, relative growth rates, growth yield, and endogenous metabolism. This quantitative sensitivity analysis explains the felt need to develop growth-dependent adaptations of existing maintenance parameters, and indicates the importance of distinguishing the various nongrowth components. Future experiments should verify the sensitivity of maintenance components under cellular and environmental conditions

    Improving the batch-to-batch reproducibility in microbial cultures during recombinant protein production by guiding the process along a predefined total biomass profile

    Get PDF
    In industry Escherichia coli is the preferred host system for the heterologous biosynthesis of therapeutic proteins that do not need posttranslational modifications. In this report, the development of a robust high-cell-density fed-batch procedure for the efficient production of a therapeutic hormone is described. The strategy is to guide the process along a predefined profile of the total biomass that was derived from a given specific growth rate profile. This profile might have been built upon experience or derived from numerical process optimization. A surprisingly simple adaptive procedure correcting for deviations from the desired path was developed. In this way the batch-to-batch reproducibility can be drastically improved as compared to the process control strategies typically applied in industry. This applies not only to the biomass but, as the results clearly show, to the product titer also

    Production of 3,4-dihydroxy L-phenylalanine by a newly isolated Aspergillus niger and parameter significance analysis by Plackett-Burman design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The amino acid derivative 3,4-dihydroxy L-phenylalanine (L-dopa) is gaining interest as a drug of choice for Parkinson's disease. <it>Aspergillus oryzae </it>is commonly used for L-dopa production; however, a slower growth rate and relatively lower tyrosinase activity of mycelia have led to an increasing interest in exploiting alternative fungal cultures. In the present investigation, we report on the microbiological transformation of L-tyrosine to L-dopa accomplished by a newly isolated filamentous fungus <it>Aspergillus niger</it>.</p> <p>Results</p> <p>The culture <it>A. niger </it>(isolate GCBT-8) was propagated in 500 ml Erlenmeyer flasks and the pre-grown mycelia (48 h old) were used in the reaction mixture as a source of enzyme tyrosinase. Grinded mycelia gave 1.26 fold higher L-dopa production compared to the intact at 6% glucose (pH 5.5). The rate of L-tyrosine consumption was improved from 0.198 to 0.281 mg/ml. Among the various nitrogen sources, 1.5% peptone, 1% yeast extract and 0.2% ammonium chloride were optimized. The maximal L-dopa was produced (0.365 mg/ml) at 0.3% potassium dihydrogen phosphate with L-tyrosine consumption of 0.403 mg/ml.</p> <p>Conclusion</p> <p>Over ~73% yield was achieved (degree of freedom 3) when the process parameters were identified using 2k-Plackett-Burman experimental design. The results are highly significant (p ≤ 0.05) and mark the commercial utility (LSD 0.016) of the mould culture which is perhaps the first ever report on L-dopa production from <it>A. niger</it>.</p

    Maximum Photosynthetic Yield of Green Microalgae in Photobioreactors

    Get PDF
    The biomass yield on light energy of Dunaliella tertiolecta and Chlorella sorokiniana was investigated in a 1.25- and 2.15-cm light path panel photobioreactor at constant ingoing photon flux density (930 µmol photons m−2 s−1). At the optimal combination of biomass density and dilution rate, equal biomass yields on light energy were observed for both light paths for both microalgae. The observed biomass yield on light energy appeared to be based on a constant intrinsic biomass yield and a constant maintenance energy requirement per gram biomass. Using the model of Pirt (New Phytol 102:3–37, 1986), a biomass yield on light energy of 0.78 and 0.75 g mol photons−1 and a maintenance requirement of 0.0133 and 0.0068 mol photons g−1 h−1 were found for D. tertiolecta and C. sorokiniana, respectively. The observed yield decreases steeply at low light supply rates, and according to this model, this is related to the increase of the amount of useable light energy diverted to biomass maintenance. With this study, we demonstrated that the observed biomass yield on light in short light path bioreactors at high biomass densities decreases because maintenance requirements are relatively high at these conditions. All our experimental data for the two strains tested could be described by the physiological models of Pirt (New Phytol 102:3–37, 1986). Consequently, for the design of a photobioreactor, we should maintain a relatively high specific light supply rate. A process with high biomass densities and high yields at high light intensities can only be obtained in short light path photobioreactors

    Phosphate feeding to permit growth while maintaining secondary product synthesis

    Full text link
    Maintaining high metabolic activities for extended periods by feeding small amounts of the growth limiting nutrient was examined for the production of cycloheximide by Streptomyces griseus . Batch studies indicated that increased initial phosphate levels led to increased cell concentrations, stimulated glucose utilization, and over a limited range (<0.6 g/l KH 2 PO 4 ) did not adversely affect cycloheximide production rates. Semi-continuous phosphate feeding was observed to permit limited cell growth, and to enhance metabolic activities (i. e. glucose utilization). The effect of semi-continuous phosphate feeding on antibiotic production depended on the feed rate, with high feed rates suppressing production.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46756/1/253_2004_Article_BF00451634.pd

    Differences in Cell Division Rates Drive the Evolution of Terminal Differentiation in Microbes

    Get PDF
    Multicellular differentiated organisms are composed of cells that begin by developing from a single pluripotent germ cell. In many organisms, a proportion of cells differentiate into specialized somatic cells. Whether these cells lose their pluripotency or are able to reverse their differentiated state has important consequences. Reversibly differentiated cells can potentially regenerate parts of an organism and allow reproduction through fragmentation. In many organisms, however, somatic differentiation is terminal, thereby restricting the developmental paths to reproduction. The reason why terminal differentiation is a common developmental strategy remains unexplored. To understand the conditions that affect the evolution of terminal versus reversible differentiation, we developed a computational model inspired by differentiating cyanobacteria. We simulated the evolution of a population of two cell types –nitrogen fixing or photosynthetic– that exchange resources. The traits that control differentiation rates between cell types are allowed to evolve in the model. Although the topology of cell interactions and differentiation costs play a role in the evolution of terminal and reversible differentiation, the most important factor is the difference in division rates between cell types. Faster dividing cells always evolve to become the germ line. Our results explain why most multicellular differentiated cyanobacteria have terminally differentiated cells, while some have reversibly differentiated cells. We further observed that symbioses involving two cooperating lineages can evolve under conditions where aggregate size, connectivity, and differentiation costs are high. This may explain why plants engage in symbiotic interactions with diazotrophic bacteria
    corecore