246 research outputs found

    Spin-valley phase diagram of the two-dimensional metal-insulator transition

    Full text link
    Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the system's valley and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.Comment: 4 pages, 2 figure

    Molecular-level simulations of turbulence and Its decay

    Get PDF
    We provide the first demonstration that molecular-level methods based on gas kinetic theory and molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC) method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC simulations reproduce the Kolmogorov − 5 / 3 law and agree well with the turbulent kinetic energy and energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a spectral method. This agreement provides strong evidence that molecular-level methods for gases can be used to investigate turbulent flows quantitatively

    Gas-kinetic simulation of sustained turbulence in minimal Couette flow

    Get PDF
    We provide a demonstration that gas-kinetic methods incorporating molecular chaos can simulate the sustained turbulence that occurs in wall-bounded turbulent shear flows. The direct simulation Monte Carlo method, a gas-kinetic molecular method that enforces molecular chaos for gas-molecule collisions, is used to simulate the minimal Couette flow at Re=500. The resulting law of the wall, the average wall shear stress, the average kinetic energy, and the continually regenerating coherent structures all agree closely with corresponding results from direct numerical simulation of the Navier-Stokes equations. These results indicate that molecular chaos for collisions in gas-kinetic methods does not prevent development of molecular-scale long-range correlations required to form hydrodynamic-scale turbulent coherent structures

    DSMC simulations of turbulent flows at moderate Reynolds numbers

    Get PDF
    The Direct Simulation Monte Carlo (DSMC) method has been used for more than 50 years to simulate rarefied gases. The advent of modern supercomputers has brought higher-density near-continuum flows within range. This in turn has revived the debate as to whether the Boltzmann equation, which assumes molecular chaos, can be used to simulate continuum flows when they become turbulent. In an effort to settle this debate, two canonical turbulent flows are examined, and the results are compared to available continuum theoretical and numerical results for the Navier-Stokes equations

    Design and Fabrication of an Industrial-Grade Instrument to Measure Texture and Predict Drawability in Sheet Metal

    Get PDF
    Texture in sheet metal must be controlled in the rolling process to assure the fabrication properties desired in later manufacturing. Drawability is one of the required engineering properties in a family of applications including beverage cans, propane tanks, and automotive parts

    A model for reactive porous transport during re-wetting of hardened concrete

    Full text link
    A mathematical model is developed that captures the transport of liquid water in hardened concrete, as well as the chemical reactions that occur between the imbibed water and the residual calcium silicate compounds residing in the porous concrete matrix. The main hypothesis in this model is that the reaction product -- calcium silicate hydrate gel -- clogs the pores within the concrete thereby hindering water transport. Numerical simulations are employed to determine the sensitivity of the model solution to changes in various physical parameters, and compare to experimental results available in the literature.Comment: 30 page

    Immunomodulatory intervention in sepsis by multidrug-resistant Pseudomonas aeruginosa with thalidomide: an experimental study

    Get PDF
    BACKGROUND: Thalidomide is an inhibitor of tumour necrosis factor-alpha (TNFα) that has been proven effective for the treatment of experimental sepsis by Escherichia coli. It was tested whether it might behave as an effective immunomodulator in experimental sepsis by multidrug-resistant (MDR) Pseudomonas aeruginosa. METHODS: Sepsis was induced by the intraperitoneal injection of 1 × 10(8 )cfu/kg inoculum of the test isolate in a total of 109 Wistar rats divided in three groups as follows: group A controls; group B administered seed oil 30 minutes before bacterial challenge; and group C administered 50 mg/kg of thalidomide diluted in seed oil 30 minutes before bacterial challenge. Blood was sampled for estimation of endotoxins (LPS), TNFα, interferon-gamma (IFNγ), nitric oxide (NO) and malondialdehyde (MDA). LPS was measured by the QCL-1000 LAL assay, TNFα and IFNγ by ELISA, NO by a colorimetric assay and MDA by the thiobarbiturate assay. RESULTS: Mean (± SE) survival of groups A, B and C were 18.60 ± 1.84, 12.60 ± 0.60 and 30.50 ± 6.62 hours (p of comparisons A to C equal to 0.043 and B to C equal to 0.002). Decreased TNFα and NO levels were found in sera of animals of group C compared to group A. Plasma levels of LPS, MDA and IFNγ did not differ between groups. CONCLUSION: Intake of thalidomide considerably prolonged survival in experimental sepsis by MDR P.aeruginosa an effect probably attributed to decrease of serum TNFα

    Investigating the dynamics of surface-immobilized DNA nanomachines

    Get PDF
    Surface-immobilization of molecules can have a profound influence on their structure, function and dynamics. Toehold-mediated strand displacement is often used in solution to drive synthetic nanomachines made from DNA, but the effects of surface-immobilization on the mechanism and kinetics of this reaction have not yet been fully elucidated. Here we show that the kinetics of strand displacement in surface-immobilized nanomachines are significantly different to those of the solution phase reaction, and we attribute this to the effects of intermolecular interactions within the DNA layer. We demonstrate that the dynamics of strand displacement can be manipulated by changing strand length, concentration and G/C content. By inserting mismatched bases it is also possible to tune the rates of the constituent displacement processes (toehold-binding and branch migration) independently, and information can be encoded in the time-dependence of the overall reaction. Our findings will facilitate the rational design of surface-immobilized dynamic DNA nanomachines, including computing devices and track-based motors
    • …
    corecore