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We provide the first demonstration that molecular-level methods based on gas kinetic theory and
molecular chaos can simulate turbulence and its decay. The direct simulation Monte Carlo (DSMC)
method, a molecular-level technique for simulating gas flows that resolves phenomena from molecular to
hydrodynamic (continuum) length scales, is applied to simulate the Taylor-Green vortex flow. The DSMC
simulations reproduce the Kolmogorov −5=3 law and agree well with the turbulent kinetic energy and
energy dissipation rate obtained from direct numerical simulation of the Navier-Stokes equations using a
spectral method. This agreement provides strong evidence that molecular-level methods for gases can be
used to investigate turbulent flows quantitatively.
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Turbulence is almost exclusively studied at the hydro-
dynamic (continuum) level. Molecular-level simulations of
turbulence have received little, if any, attention to date
because the molecular scales and the turbulent scales are
considered to be many orders of magnitude apart, and, as a
result, molecular turbulence simulations have been here-
tofore considered to be physically unnecessary and com-
putationally intractable. However, there are cases of
practical interest in which the Kolmogorov length and
time scales, which are the smallest length and time scales in
a turbulent flow, can be within 1–2 orders of magnitude
of the mean free path and the mean collision time. For a
high-speed gas flow with a turbulent Mach number
M and a turbulent Reynolds number Re, the ratio of the
Kolmogorov length scale to the mean free path scales as
Re1=4=M, and the ratio of the Kolmogorov time scale to
the mean collision time scales as Re1=2=M2 [1]. Thus, for
M ¼ 1 and Re ¼ 10000, these ratios are ∼10 and ∼100,
respectively. In such cases, studying turbulence and energy
exchange at the molecular level may offer new physical
insights.
The most common starting point for any molecular-level,

kinetic-theory investigation of a gas flow is the Boltzmann
equation (BE). Kinetic theory describes a gas in terms of a
distribution function f of molecular velocities and posi-
tions. The velocity distribution function f provides a
complete description of a dilute monatomic gas at the
molecular level. The BE gives the evolution of the velocity
distribution function f:
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where t is the time, x is the position in physical space, v is
the molecular velocity, F is any external force (velocity-
independent above and zero herein), m is the molecular
mass, and n is the number density. The right side is the
collision integral. In this integral, the distribution functions
f and f� are evaluated at the molecule’s precollision
velocity v and postcollision velocity v�, respectively, and
the distribution functions f1 and f�1 are evaluated at the
collision partner’s precollision velocity v1 and postcollision
velocity v�1, respectively. Also in the collision term,
cr ¼ jv − v1j is the relative speed of the colliding mole-
cules, σ is the cross section of the binary collision, and Ω is
the solid angle. The details of the binary collision are
included in the collision cross section.
The BE is based on two fundamental assumptions.

The first is that only binary collisions are considered.
The second is that molecular chaos applies (the
“Stosszahlansatz”), which leads to the time irreversibility
of the BE. The apparent incompatibility between the
irreversible tendency of the BE velocity distribution func-
tion toward equilibrium and the underlying reversibility of
molecular collisions suggests a stochastic interpretation of
the BE velocity distribution function as the most probable
number of molecules at a particular point in phase space
[2]. Aristov [3] and Tsugé [4] suggest that the introduction
of fluctuations into the BE is critical for simulating
turbulent flows. Tsugé [4] further argues that the BE could
simulate turbulent flows if the BE velocity distribution
function were replaced by a particle-based distribution
function like the Klimontovich distribution function fK:

fKðx; v; tÞ ¼
XN
i¼0

δ3(x − xiðtÞ)δ3(v − viðtÞ): ð2Þ

In this approach, the ensemble average of fK is the
distribution function f that appears in the BE. Thus, a
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particle-based distribution function provides microscopic
detail not available to the BE distribution function, in the
sense that it allows the appearance of fluctuations, which
are otherwise absent from the BE. Moreover, Grad [5]
showed that uncorrelated initial conditions are the most
probable initial conditions for molecule collisions. This
observation suggests that the assumption of molecular
chaos at the microscopic level does not preclude the
establishment of fluctuations at the macroscopic level [3,6].
Thus, the ability of the BE to simulate turbulent flows

has been suggested theoretically [3,4,6] but has not yet
been investigated computationally. The major problem is
the magnitude of the computational effort required to
resolve all of the length scales from the molecular to the
macroscopic. High-performance computing platforms have
only recently become available on which molecular-level
gas-flow simulations resolving turbulent length scales are
possible, albeit computationally intensive.
Bird’s direct simulation Monte Carlo (DSMC) method

[7] is widely used as a surrogate for a direct solution of the
BE. DSMC is a molecular-level technique for simulating
gas flows when the mean free path is much larger than the
molecular diameter, which is typically the case. DSMC
uses a molecular-level, stochastic algorithm that approx-
imates the continuous velocity distribution function of the
BE with a discrete number of computational molecules or
“particles,” just as in the Klimontovich distribution function
in Eq. (2). Each of the N particles typically represents a
large number of real molecules, and these particles move,
collide with other particles, and reflect from boundaries just
as real molecules do. Substituting Eq. (2) into Eq. (1) yields
2N differential equations [8]:

dxi=dt ¼ vi; dðmiviÞ=dt ¼ FðxiÞ þCðviÞ; ð3Þ

where CðviÞ represents the binary collision process each
particle undergoes during the time step and FðxiÞ is the
external force (zero herein).
The physical domain is discretized into a set of cells. A

time-splitting scheme based on Eq. (3) is used that consists
of a move operation, during which particles translate
ballistically over time step Δt, followed by a collide
operation, during which pairs of particles within the same
cell are randomly selected for collision. Unlike the
Klimontovich distribution, in which particles are math-
ematical points in space, particles are assigned finite
collision cross sections based on the intermolecular inter-
action of interest. Macroscopic gas properties are deter-
mined by sampling the properties of the particles resident in
a cell at a particular time. Standard DSMC executes each of
these operations once per time step in the order move-
collide-sample.
Wagner [9] proved that DSMC simulations approach

solutions of the BE for monatomic molecules in the limit of
vanishing discretization and statistical errors. Gallis,

Torczynski, and Rader [10] reported DSMC results for
transport properties and velocity distribution functions that
are in excellent agreement with Chapman-Enskog infinite-
approximation results [11] for conditions that are near
equilibrium and with moment-hierarchy results for con-
ditions that are far from equilibrium [12].
DSMC inherently accounts for both near-equilibrium

transport (viscosity, thermal conductivity, and mass diffu-
sivity) and nonequilibrium phenomena (thermal and pres-
sure diffusion) [6]. More importantly, DSMC inherently
reproduces the thermal fluctuations that in some cases may
trigger the instabilities leading to coherent flow structures
and turbulence [13,14]. When each particle represents a
single actual molecule, DSMC exactly reproduces the
fluctuations in an equilibrium gas [13], which are typically
extremely small. When each particle represents many
actual molecules, the variances of the fluctuations in a
DSMC simulation are the actual variances multiplied by the
number of actual molecules represented by each particle
(i.e., the simulation ratio). In this situation, these fluctua-
tions can be reduced to an acceptable level, relative to
macroscopic velocities, through ensemble averaging [15].
The substantial computational effort needed to achieve

acceptable signal-to-noise ratios for high-density, low-
speed flows has generally prevented DSMC and other
molecular-level methods from simulating macroscopic
hydrodynamic (continuum) phenomena at the molecular
level. Recently, however, DSMC simulations of the
Richtmyer-Meshkov and Rayleigh-Taylor instabilities have
been successfully performed using massively parallel
computers [14,15]. To demonstrate the ability of DSMC
to simulate turbulent flows, simulations of the Taylor-
Green (TG) vortex flow [16] are performed. TG flow is a
canonical turbulent flow in which the generation of small-
scale eddies and the corresponding cascade of energy from
small to large wave numbers can be numerically observed.
TG flow has been used extensively to study isotropic
turbulence [17–19]. TG flow is initialized in a triply
periodic domain −πL ≤ x ≤ πL using a flow field that
contains only a single length scale L and a single velocity
scale V0:

u ¼ V0 sinðx=LÞ cosðy=LÞ cosðz=LÞ;
v ¼ −V0 cosðx=LÞ sinðy=LÞ cosðz=LÞ;
w ¼ 0;

p ¼ p0 þ
ρ0V2

0

16
½cosð2x=LÞ þ cosð2y=LÞ�

× ½cosð2z=LÞ þ 2�; ð4Þ

where u ¼ ðu; v; wÞ is the flow velocity and p is the
pressure at position x ¼ ðx; y; zÞ. Thus, all of the kinetic
energy in the flow is initially resident in a single wave
number.
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The evolution of TG flow is described in terms of the
nondimensional time T ¼ V0t=L. Early on, the flow is
highly anisotropic and laminar. Nonlinear interactions
between the developing eddies result in an energy cascade
from small to large wave numbers and the rapid develop-
ment of a turbulent spectrum. Later on, a catastrophic
collapse of the accumulated energy leads the flow to a state
that exhibits features of isotropic, homogeneous turbulence
[17]. An important mechanism involved in homogeneous
three-dimensional turbulent flows is the maintenance and
enhancement of vorticity by vortex-line stretching and the
consequent production of small-scale eddies [1]. This
process controls the turbulent-energy dynamics and hence
the global structure and evolution of the flow [18].
The rate at which energy dissipates to larger wave

numbers is a weak function of the Reynolds number.
Increasing the Reynolds number from 400 to 5000
increases the maximum dissipation rate by only 40%
[18]. However, for Re ≤ 400, the maximum dissipation
is achieved at approximately the same time (T ¼ 5),
whereas for Re ≥ 500, a second maximum in the dissipa-
tion appears at a later time (T ¼ 9). As a result, in the range
of 400 ≤ Re ≤ 500, the dissipation rate has an extended
region over which near-maximum dissipation is observed.
The DSMC code SPARTA [20,21] was used to simulate

TG flow at Re ¼ 450 to obtain quantitative results for the
energy dissipation rate and the spectral energy distribution.
These simulations were performed on Sequoia, an IBM
Blue Gene/Q supercomputer at Lawrence Livermore
National Laboratory, and used more than half a million
cores for 500 h. The simulation domain is a triply periodic
cube with sides of length 2πL, where L ¼ 0.0001 m. The
gas is taken to have the molecular mass of nitrogen, and the
initial density and temperature correspond to values at STP
(101 325 Pa and 273.15 K, respectively). The simulations
used 8 billion cells (20003) and an average of 30 particles
per cell for a total of 0.24 trillion particles. To improve the
spatial discretization, collision partners are selected from
within a sphere having a radius that equals the distance
traveled by the particle during a time step. The character-
istic (maximum) velocity V0 corresponds to a Mach
number of 0.3, so the simulation conditions marginally
satisfy the incompressibility assumption (less than 8%
maximum error) [22]. Molecular collisions are performed
using the variable soft sphere collision model [6], which for
nitrogen produces a viscosity with a T0.74

thermal dependence on
the thermal temperature T thermal. Multiple collisions
between the same molecules during the same time step
are not allowed, which enforces molecular chaos in the
collision process.
The discretization errors in DSMC act to increase the

transport properties [23]. For these simulations, the effec-
tive viscosity and hence the effective Reynolds number are
determined by comparing a thin-slab DSMC simulation
(one layer of cells in the z direction) of the two-dimensional

TG flow to the analytical expression for the decay of its
kinetic energy [19]. This comparison indicates that the
particular discretization used for these simulations leads to
an effective Reynolds number of Re ¼ 450. For these
conditions, the ratio of the Kolmogorov length scale to
the mean free path is about 15, and the ratio of the
Kolmogorov time scale to the mean collision time is about
235, which suggests that molecular effects play at most a
small role, even for the smallest scales.
The direct numerical simulation (DNS) simulations to

which the DSMC simulations are compared were carried
out using the spectral element code NEK5000 [24]. The
simulation domain was a cube with sides of length 2π, and
the initial conditions given by Eq. (4) are imposed using a
characteristic velocity V0 ¼ 1. The fluid is modeled as
incompressible with a constant viscosity of μ ¼ 1=Re and a
constant density of ρ ¼ 1. It is noted that, since the total
temperature increase is less than 2 K, this is a reasonable
assumption. The simulation domain was discretized using
32 seventh-order spectral elements along each coordinate
direction. Each spectral element contained 83 grid points
placed at the Gauss-Lobatto nodes, for a total of 256 grid
points along each coordinate axis. Third-order-accurate
temporal integration is employed with a fixed Courant
number of 0.8. After the simulation, the velocity fields are
interpolated onto a uniform grid using the seventh-order
polynomials associated with the spectral elements as
interpolants. After interpolating the data onto this grid of
equally spaced points, discrete Fourier transforms are
applied to obtain the energy spectra. To verify the DNS
approach, the TG simulations of van Rees [25] at a
Reynolds number of Re ¼ 1600 are reproduced. To con-
firm that the results reported here are mesh independent,
simulations are performed on 2563 and 5123 grids (i.e., 32
and 64 elements along each coordinate axis). The dis-
sipation rates are found to differ by only 0.02% at T ¼ 9
and by at most only 0.06% over 0 ≤ T ≤ 20.
Figures 1 and 2 present the u velocity component on the

bounding planes of the domain from the DNS and DSMC
simulations at T ¼ 9, the time of maximum dissipation, and
at T ¼ 20. Except for being slightly noisy, the DSMC
molecular results are virtually identical to the DNS Navier-
Stokes results at both times. A detailed presentation of the
evolution of the flow field can be found in the works of
Brachet et al. [17] and Canuto et al. [19]. At the time of
maximum dissipation, the large-scale structures that are the
remnants of the initial conditions are still discernible, but
many smaller-scale structures are also present. This behav-
ior is in good qualitative agreement with previously
published results [19]. At T ¼ 20, the original structures
have become much weaker because the flow field has
almost thermalized.
Figure 3 presents the turbulent-kinetic-energy decay as a

function of time. The DSMC results are seen to agree
closely with the DNS results over the entire time period
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except at late times after most of the kinetic energy has
decayed and with the theory of Taylor and Green [16] at
early times. The DSMC and DNS results are both normal-
ized by their initial values, and the DSMC results are
averaged over a window of ΔT ¼ 0.3 to reduce statistical
noise. Since the theory of Taylor and Green is accurate only
for T ≤ 3 [16], results from this theory are presented only
up to T ¼ 3. Kinetic energy is ultimately converted to
thermal energy through molecular collisions (viscosity).
For T < 3, the rate of conversion is slow. At T ¼ 3, beyond
which the theory of Taylor and Green becomes inaccurate,
the rate increases. The rapid conversion of kinetic energy to
thermal energy between T ¼ 5 and T ¼ 12 is captured
equally well by both simulations. After T ¼ 12, the rate of
conversion decreases because most of the kinetic energy
has decayed. This observation is in agreement with the
assertions that the early stages of TG flow are driven mainly
by inertial subrange physics and that the later stages are
determined mainly by the viscosity [17].
Figure 4 presents the energy dissipation rate as a function

of time. The DSMC and DNS results are in good agreement
over the entire time period during which the energy
dissipation rate is significant. Both methods yield the same
rapid increase from T ¼ 2 to T ¼ 6, the same plateau from
T ¼ 6 to T ¼ 8, the same maximum between T ¼ 8 and
T ¼ 9, the same rapid decrease from T ¼ 9 to T ¼ 15, and
the same slow decrease from T ¼ 15 to T ¼ 20. In accord
with Fig. 2, DSMC does generally yield a slightly faster
rate than DNS (the noticeably larger rate for T ≤ 2 may be
caused by compressibility effects related to the finite initial

Mach number, 0.3). Results from the viscous theory of
Taylor and Green [16] and from the inviscid theory by
Brachet et al. [17] are also shown in this figure. Both
theories are valid only for early times (T < 3 and T < 4,
respectively). For T > 2, these two approximate theories
bracket the DSMC and DNS results.
Figure 5 presents three-dimensional kinetic-energy spec-

tra at times near maximum dissipation. The DSMC spectra
from T ¼ 7.5 to T ¼ 9 and the DNS spectrum at T ¼ 9 are
in good agreement and all exhibit the Kolmogorov −5=3
law over about 70% of a decade. As time progresses, the
energy in the low-wave-number, large-wavelength region
of the spectrum decreases. During this time, energy is
transferred from the initial large wavelength to smaller
wavelengths, a process known as the energy cascade.
The fact that the DSMC results agree closely with

the DNS results, the theory of Taylor and Green, and
the theory of Kolmogorov suggests that DSMC can be used
for quantitative investigations of turbulence and its decay.

FIG. 1. DNS (left) and DSMC (right) plots of the u velocity at
T ¼ 9, the time of maximum dissipation.

FIG. 2. DNS (left) and DSMC (right) plots of the u velocity at
T ¼ 20.

FIG. 3. Turbulent-kinetic-energy decay as a function of time.

FIG. 4. Energy dissipation rate as a function of time.

PRL 118, 064501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

10 FEBRUARY 2017

064501-4



This observation is in agreement with the theoretically
based suggestions of Aristov [3] and Tsugé [4] about the
ability of the BE and molecular-level methods to simulate
turbulent flows. In this sense, DSMC can be viewed as an
extension of DNS methods in that the subcell dissipative
processes are inherently represented without filtering out
naturally occurring thermodynamic fluctuations. Although
molecular fluctuations may well affect the transition to
turbulence [15], they do not affect the decay of turbulence
significantly for the Taylor-Green vortex flow studied
herein and presumably for other similar flows. Thus, taking
advantage of ever-increasing computer power, DSMC
offers the possibility of generating molecular-level data
sets that complement existing computational and exper-
imental data sets, especially for realistic flight geometries in
hypersonic flows.
Since it inherently represents molecular-level effects and

thermal fluctuations,DSMChas the potential to improve our
understanding of how these phenomena influence turbu-
lence. In DSMC, hydrodynamic quantities such as com-
pressibility, viscosity, thermal conductivity, and diffusivity
arise directly from molecular processes, so their effects on
turbulence are automatically captured. Since internal energy
modes (rotation and vibration) and chemical reactions are
also represented at the molecular level, DSMC offers a
natural way to study their effects on turbulence. Moreover,
the effect of surface roughness on wall-bounded turbulence
can be investigated fundamentally because DSMC treats
gas-wall interactions at the molecular level.
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