11 research outputs found

    Preventing intrusive memories after trauma via a brief intervention involving Tetris computer game play in the emergency department: a proof-of-concept randomized controlled trial.

    Get PDF
    After psychological trauma, recurrent intrusive visual memories may be distressing and disruptive. Preventive interventions post trauma are lacking. Here we test a behavioural intervention after real-life trauma derived from cognitive neuroscience. We hypothesized that intrusive memories would be significantly reduced in number by an intervention involving a computer game with high visuospatial demands (Tetris), via disrupting consolidation of sensory elements of trauma memory. The Tetris-based intervention (trauma memory reminder cue plus c. 20 min game play) vs attention-placebo control (written activity log for same duration) were both delivered in an emergency department within 6 h of a motor vehicle accident. The randomized controlled trial compared the impact on the number of intrusive trauma memories in the subsequent week (primary outcome). Results vindicated the efficacy of the Tetris-based intervention compared with the control condition: there were fewer intrusive memories overall, and time-series analyses showed that intrusion incidence declined more quickly. There were convergent findings on a measure of clinical post-trauma intrusion symptoms at 1 week, but not on other symptom clusters or at 1 month. Results of this proof-of-concept study suggest that a larger trial, powered to detect differences at 1 month, is warranted. Participants found the intervention easy, helpful and minimally distressing. By translating emerging neuroscientific insights and experimental research into the real world, we offer a promising new low-intensity psychiatric intervention that could prevent debilitating intrusive memories following trauma

    Dynein light chain 1 functions in somatic cyst cells regulate spermatogonial divisions in Drosophila

    Get PDF
    Stem cell progeny often undergo transit amplifying divisions before differentiation. In Drosophila, a spermatogonial precursor divides four times within an enclosure formed by two somatic-origin cyst cells, before differentiating into spermatocytes. Although germline and cyst cell-intrinsic factors are known to regulate these divisions, the mechanistic details are unclear. Here, we show that loss of dynein-light-chain-1 (DDLC1/LC8) in the cyst cells eliminates bag-of-marbles (bam) expression in spermatogonia, causing gonial cell hyperplasia in Drosophila testis. The phenotype is dominantly enhanced by Dhc64C (cytoplasmic Dynein) and didum (Myosin V) loss-of-function alleles. Loss of DDLC1 or Myosin V in the cyst cells also affects their differentiation. Furthermore, cyst cell-specific loss of ddlc1 disrupts Armadillo, DE-cadherin and Integrin-βPS localizations in the cyst. Together, these results suggest that Dynein and Myosin V activities, and independent DDLC1 functions in the cyst cells organize the somatic microenvironment that regulates spermatogonial proliferation and differentiation
    corecore