153 research outputs found

    Causal pathways linking environmental change with health behaviour change: Natural experimental study of new transport infrastructure and cycling to work.

    Get PDF
    BACKGROUND: Mechanisms linking changes to the environment with changes in physical activity are poorly understood. Insights into mechanisms of interventions can help strengthen causal attribution and improve understanding of divergent response patterns. We examined the causal pathways linking exposure to new transport infrastructure with changes in cycling to work. METHODS: We used baseline (2009) and follow-up (2012) data (N=469) from the Commuting and Health in Cambridge natural experimental study (Cambridge, UK). Exposure to new infrastructure in the form of the Cambridgeshire Guided Busway was defined using residential proximity. Mediators studied were changes in perceptions of the route to work, theory of planned behaviour constructs and self-reported use of the new infrastructure. Outcomes were modelled as an increase, decrease or no change in weekly cycle commuting time. We used regression analyses to identify combinations of mediators forming potential pathways between exposure and outcome. We then tested these pathways in a path model and stratified analyses by baseline level of active commuting. RESULTS: We identified changes in perceptions of the route to work, and use of the cycle path, as potential mediators. Of these potential mediators, only use of the path significantly explained (85%) the effect of the infrastructure in increasing cycling. Path use also explained a decrease in cycling among more active commuters. CONCLUSION: The findings strengthen the causal argument that changing the environment led to changes in health-related behaviour via use of the new infrastructure, but also show how some commuters may have spent less time cycling as a result.The Commuting and Health in Cambridge study was developed by David Ogilvie, Simon Griffin, Andy Jones and Roger Mackett and initially funded under the auspices of the Centre for Diet and Activity Research (CEDAR), a UKCRC Public Health Research Centre of Excellence. Funding from the British Heart Foundation, Economic and Social Research Council, Medical Research Council, National Institute for Health Research and the Wellcome Trust, under the auspices of the UK Clinical Research Collaboration, is gratefully acknowledged. The study was subsequently funded by the National Institute for Health Research Public Health Research programme (project number 09/3001/06). RP, SG and DO are supported by the Medical Research Council [Unit Programme number MC_UP_12015/6] and JP is supported by a National Institute for Health Research (NIHR) post-doctoral fellowship (PDF 2012-05-157). The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the NIHR PHR programme or the Department of Health. The funders had no role in study design, data collection and analysis, the decision to publish, or the preparation of the manuscript. We thank all staff from the MRC Epidemiology Unit Functional Group Team, in particular for study coordination and data collection (led by Cheryl Chapman and Fiona Whittle) and data management. We also thank Alice Dalton for computing the proximity measures used in this analysis and Louise Foley for her contribution to preparing the questionnaire data for analysis.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ypmed.2016.02.04

    Altered Velocity Processing in Schizophrenia during Pursuit Eye Tracking

    Get PDF
    Smooth pursuit eye movements (SPEM) are needed to keep the retinal image of slowly moving objects within the fovea. Depending on the task, about 50%–80% of patients with schizophrenia have difficulties in maintaining SPEM. We designed a study that comprised different target velocities as well as testing for internal (extraretinal) guidance of SPEM in the absence of a visual target. We applied event-related fMRI by presenting four velocities (5, 10, 15, 20°/s) both with and without intervals of target blanking. 17 patients and 16 healthy participants were included. Eye movements were registered during scanning sessions. Statistical analysis included mixed ANOVAs and regression analyses of the target velocity on the Blood Oxygen Level Dependency (BOLD) signal. The main effect group and the interaction of velocity×group revealed reduced activation in V5 and putamen but increased activation of cerebellar regions in patients. Regression analysis showed that activation in supplementary eye field, putamen, and cerebellum was not correlated to target velocity in patients in contrast to controls. Furthermore, activation in V5 and in intraparietal sulcus (putative LIP) bilaterally was less strongly correlated to target velocity in patients than controls. Altered correlation of target velocity and neural activation in the cortical network supporting SPEM (V5, SEF, LIP, putamen) implies impaired transformation of the visual motion signal into an adequate motor command in patients. Cerebellar regions seem to be involved in compensatory mechanisms although cerebellar activity in patients was not related to target velocity

    A technique to train new oculomotor behavior in patients with central macular scotomas during reading related tasks using scanning laser ophthalmoscopy: immediate functional benefits and gains retention

    Get PDF
    BACKGROUND: Reading with a central scotoma involves the use of preferred retinal loci (PRLs) that enable both letter resolution and global viewing of word. Spontaneously developed PRLs however often privilege spatial resolution and, as a result, visual span is commonly limited by the position of the scotoma. In this study we designed and performed the pilot trial of a training procedure aimed at modifying oculomotor behavior in subjects with central field loss. We use an additional fixation point which, when combined with the initial PRL, allows the fulfillment of both letter resolution and global viewing of words. METHODS: The training procedure comprises ten training sessions conducted with the scanning laser ophthalmoscope (SLO). Subjects have to read single letters and isolated words varying in length, by combining the use of their initial PRL with the one of an examiner's selected trained retinal locus (TRL). We enrolled five subjects to test for the feasibility of the training technique. They showed stable maculopathy and persisting major reading difficulties despite previous orthoptic rehabilitation. We evaluated ETDRS visual acuity, threshold character size for single letters and isolated words, accuracy for paragraphed text reading and reading strategies before, immediately after SLO training, and three months later. RESULTS: Training the use of multiple PRLs in patients with central field loss is feasible and contributes to adapt oculomotor strategies during reading related tasks. Immediately after SLO training subjects used in combination with their initial PRL the examiner's selected TRL and other newly self-selected PRLs. Training gains were also reflected in ETDRS acuity, threshold character size for words of different lengths and in paragraphed text reading. Interestingly, subjects benefited variously from the training procedure and gains were retained differently as a function of word length. CONCLUSION: We designed a new procedure for training patients with central field loss using scanning laser ophthalmoscopy. Our initial results on the acquisition of newly self-selected PRLs and the development of new oculomotor behaviors suggest that the procedure aiming primarily at developing an examiner's selected TRL might have initiated a more global functional adaptation process

    Growth Rules for the Repair of Asynchronous Irregular Neuronal Networks after Peripheral Lesions

    Get PDF
    © 2021 Sinha et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/Several homeostatic mechanisms enable the brain to maintain desired levels of neuronal activity. One of these, homeostatic structural plasticity, has been reported to restore activity in networks disrupted by peripheral lesions by altering their neuronal connectivity. While multiple lesion experiments have studied the changes in neurite morphology that underlie modifications of synapses in these networks, the underlying mechanisms that drive these changes are yet to be explained. Evidence suggests that neuronal activity modulates neurite morphology and may stimulate neurites to selective sprout or retract to restore network activity levels. We developed a new spiking network model of peripheral lesioning and accurately reproduced the characteristics of network repair after deafferentation that are reported in experiments to study the activity dependent growth regimes of neurites. To ensure that our simulations closely resemble the behaviour of networks in the brain, we model deafferentation in a biologically realistic balanced network model that exhibits low frequency Asynchronous Irregular (AI) activity as observed in cerebral cortex. Our simulation results indicate that the re-establishment of activity in neurons both within and outside the deprived region, the Lesion Projection Zone (LPZ), requires opposite activity dependent growth rules for excitatory and inhibitory post-synaptic elements. Analysis of these growth regimes indicates that they also contribute to the maintenance of activity levels in individual neurons. Furthermore, in our model, the directional formation of synapses that is observed in experiments requires that pre-synaptic excitatory and inhibitory elements also follow opposite growth rules. Lastly, we observe that our proposed structural plasticity growth rules and the inhibitory synaptic plasticity mechanism that also balances our AI network both contribute to the restoration of the network to pre-deafferentation stable activity levels.Peer reviewe

    Visuomotor Cerebellum in Human and Nonhuman Primates

    Get PDF
    In this paper, we will review the anatomical components of the visuomotor cerebellum in human and, where possible, in non-human primates and discuss their function in relation to those of extracerebellar visuomotor regions with which they are connected. The floccular lobe, the dorsal paraflocculus, the oculomotor vermis, the uvula–nodulus, and the ansiform lobule are more or less independent components of the visuomotor cerebellum that are involved in different corticocerebellar and/or brain stem olivocerebellar loops. The floccular lobe and the oculomotor vermis share different mossy fiber inputs from the brain stem; the dorsal paraflocculus and the ansiform lobule receive corticopontine mossy fibers from postrolandic visual areas and the frontal eye fields, respectively. Of the visuomotor functions of the cerebellum, the vestibulo-ocular reflex is controlled by the floccular lobe; saccadic eye movements are controlled by the oculomotor vermis and ansiform lobule, while control of smooth pursuit involves all these cerebellar visuomotor regions. Functional imaging studies in humans further emphasize cerebellar involvement in visual reflexive eye movements and are discussed

    A Daily Diary Approach to the Examination of Chronic Stress, Daily Hassles and Safety Perceptions in Hospital Nursing

    Get PDF
    Purpose: Stress is a significant concern for individuals and organisations. Few studies have explored stress, burnout and patient safety in hospital nursing on a daily basis at the individual level. This study aimed to examine the effects of chronic stress and daily hassles on safety perceptions, the effect of chronic stress on daily hassles experienced and chronic stress as a potential moderator. Method: Utilising a daily diary design, 83 UK hospital nurses completed three end-of-shift diaries, yielding 324 person days. Hassles, safety perceptions and workplace cognitive failure were measured daily, and a baseline questionnaire included a measure of chronic stress. Hierarchical multivariate linear modelling was used to analyse the data. Results: Higher chronic stress was associated with more daily hassles, poorer perceptions of safety and being less able to practise safely, but not more workplace cognitive failure. Reporting more daily hassles was associated with poorer perceptions of safety, being less able to practise safely and more workplace cognitive failure. Chronic stress did not moderate daily associations. The hassles reported illustrate the wide-ranging hassles nurses experienced. Conclusion: The findings demonstrate, in addition to chronic stress, the importance of daily hassles for nurses’ perceptions of safety and the hassles experienced by hospital nurses on a daily basis. Nurses perceive chronic stress and daily hassles to contribute to their perceptions of safety. Measuring the number of daily hassles experienced could proactively highlight when patient safety threats may arise, and as a result, interventions could usefully focus on the management of daily hassles
    corecore