438 research outputs found

    Light-Cone Quantization and Hadron Structure

    Get PDF
    In this talk, I review the use of the light-cone Fock expansion as a tractable and consistent description of relativistic many-body systems and bound states in quantum field theory and as a frame-independent representation of the physics of the QCD parton model. Nonperturbative methods for computing the spectrum and LC wavefunctions are briefly discussed. The light-cone Fock state representation of hadrons also describes quantum fluctuations containing intrinsic gluons, strangeness, and charm, and, in the case of nuclei, "hidden color". Fock state components of hadrons with small transverse size, such as those which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions; i.e., "color transparency". The use of light-cone Fock methods to compute loop amplitudes is illustrated by the example of the electron anomalous moment in QED. In other applications, such as the computation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics.Comment: LaTex 36 pages, 3 figures. To obtain a copy, send e-mail to [email protected]

    CP violation Beyond the MSSM: Baryogenesis and Electric Dipole Moments

    Full text link
    We study electroweak baryogenesis and electric dipole moments in the presence of the two leading-order, non-renormalizable operators in the Higgs sector of the MSSM. Significant qualitative and quantitative differences from MSSM baryogenesis arise due to the presence of new CP-violating phases and to the relaxation of constraints on the supersymmetric spectrum (in particular, both stops can be light). We find: (1) spontaneous baryogenesis, driven by a change in the phase of the Higgs vevs across the bubble wall, becomes possible; (2) the top and stop CP-violating sources can become effective; (3) baryogenesis is viable in larger parts of parameter space, alleviating the well-known fine-tuning associated with MSSM baryogenesis. Nevertheless, electric dipole moments should be measured if experimental sensitivities are improved by about one order of magnitude.Comment: 33 pages, 6 figure

    A ‘quiet revolution’? The impact of Training Schools on initial teacher training partnerships

    Get PDF
    This paper discusses the impact on initial teacher training of a new policy initiative in England: the introduction of Training Schools. First, the Training School project is set in context by exploring the evolution of a partnership approach to initial teacher training in England. Ways in which Training Schools represent a break with established practice are considered together with their implications for the dominant mode of partnership led by higher education institutions (HEIs). The capacity of Training Schools to achieve their own policy objectives is examined, especially their efficacy as a strategy for managing innovation and the dissemination of innovation. The paper ends by focusing on a particular Training School project which has adopted an unusual approach to its work and enquires whether this alternative approach could offer a more profitable way forward. During the course of the paper, five different models of partnership are considered: collaborative, complementary, HEI-led, school-led and partnership within a partnership

    Towards population-based structural health monitoring, part IV : heterogeneous populations, transfer and mapping

    Get PDF
    Population-based structural health monitoring (PBSHM) involves utilising knowledge from one set of structures in a population and applying it to a different set, such that predictions about the health states of each member in the population can be performed and improved. Central ideas behind PBSHM are those of knowledge transfer and mapping. In the context of PBSHM, knowledge transfer involves using information from a structure, defined as a source domain, where labels are known for a given feature, and mapping these onto the unlabelled feature space of a different, target domain structure. If the mapping is successful, a machine learning classifier trained on the transformed source domain data will generalise to the unlabelled target domain data; i.e. a classifier built on one structure will generalise to another, making Structural Heath Monitoring (SHM) cost-effective and applicable to a wide range of challenging industrial scenarios. This process of mapping features and labels across source and target domains is defined as domain adaptation, a subcategory of transfer learning. However, a key assumption in conventional domain adaptation methods is that there is consistency between the feature and label spaces. This means that the features measured from one structure must be the same dimension as the other (i.e. the same number of spectral lines of a transmissibility), and that labels associated with damage locations, classification and assessment, exist on both structures. These consistency constraints can be restrictive, limiting to which types of population domain adaptation can be applied. This paper, therefore, provides a mathematical underpinning for when domain adaptation is possible in a structural dynamics context, with reference to topology of a graphical representation of structures. By defining when conventional domain adaptation is applicable in a structural dynamics setting, approaches are discussed that could overcome these consistency restrictions. This approach provides a general means for performing transfer learning within a PBSHM context for structural dynamics-based features

    Respiratory mucosal immune memory to SARS-CoV-2 after infection and vaccination

    Get PDF
    Respiratory mucosal immunity induced by vaccination is vital for protection from coronavirus infection in animal models. In humans, the capacity of peripheral vaccination to generate sustained immunity in the lung mucosa, and how this is influenced by prior SARS-CoV-2 infection, is unknown. Here we show using bronchoalveolar lavage samples that donors with history of both infection and vaccination have more airway mucosal SARS-CoV-2 antibodies and memory B cells than those only vaccinated. Infection also induces populations of airway spike-specific memory CD4+ and CD8+ T cells that are not expanded by vaccination alone. Airway mucosal T cells induced by infection have a distinct hierarchy of antigen specificity compared to the periphery. Spike-specific T cells persist in the lung mucosa for 7 months after the last immunising event. Thus, peripheral vaccination alone does not appear to induce durable lung mucosal immunity against SARS-CoV-2, supporting an argument for the need for vaccines targeting the airways

    Electroweak Baryogenesis and Dark Matter with an approximate R-symmetry

    Full text link
    It is well known that R-symmetric models dramatically alleviate the SUSY flavor and CP problems. We study particular modifications of existing R-symmetric models which share the solution to the above problems, and have interesting consequences for electroweak baryogenesis and the Dark Matter (DM) content of the universe. In particular, we find that it is naturally possible to have a strongly first-order electroweak phase transition while simultaneously relaxing the tension with EDM experiments. The R-symmetry (and its small breaking) implies that the gauginos (and the neutralino LSP) are pseudo-Dirac fermions, which is relevant for both baryogenesis and DM. The singlet superpartner of the U(1)_Y pseudo-Dirac gaugino plays a prominent role in making the electroweak phase transition strongly first-order. The pseudo-Dirac nature of the LSP allows it to behave similarly to a Dirac particle during freeze-out, but like a Majorana particle for annihilation today and in scattering against nuclei, thus being consistent with current constraints. Assuming a standard cosmology, it is possible to simultaneously have a strongly first-order phase transition conducive to baryogenesis and have the LSP provide the full DM relic abundance, in part of the allowed parameter space. However, other possibilities for DM also exist, which are discussed. It is expected that upcoming direct DM searches as well as neutrino signals from DM annihilation in the Sun will be sensitive to this class of models. Interesting collider and Gravity-wave signals are also briefly discussed.Comment: 50 pages, 10 figure

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Dexamethasone and Long-Term Outcome of Tuberculous Meningitis in Vietnamese Adults and Adolescents

    Get PDF
    BACKGROUND: Dexamethasone has been shown to reduce mortality in patients with tuberculous meningitis but the long-term outcome of the disease is unknown. METHODS: Vietnamese adults and adolescents with tuberculous meningitis recruited to a randomised, double-blind, placebo-controlled trial of adjunctive dexamethasone were followed-up at five years, to determine the effect of dexamethasone on long-term survival and neurological disability. RESULTS: 545 patients were randomised to receive either dexamethasone (274 patients) or placebo (271 patients). 50 patients (9.2%) were lost to follow-up at five years. In all patients two-year survival, probabilities tended to be higher in the dexamethasone arm (0.63 versus 0.55; p = 0.07) but five-year survival rates were similar (0.54 versus 0.51, p = 0.51) in both groups. In patients with grade 1 TBM, but not with grade 2 or grade 3 TBM, the benefit of dexamethasone treatment tended to persist over time (five-year survival probabilities 0.69 versus 0.55, p = 0.07) but there was no conclusive evidence of treatment effect heterogeneity by TBM grade (p = 0.36). The dexamethasone group had a similar proportion of severely disabled patients among survivors at five years as the placebo group (17/128, 13.2% vs. 17/116, 14.7%) and there was no significant association between dexamethasone treatment and disability status at five years (p = 0.32). CONCLUSIONS: Adjunctive dexamethasone appears to improve the probability of survival in patients with TBM, until at least two years of follow-up. We could not demonstrate a five-year survival benefit of dexamethasone treatment which may be confined to patients with grade 1 TBM. TRIAL REGISTRATION: ClinicalTrials.gov NCT01317654

    Placental transfusion: a review

    Get PDF
    Recently there have been a number of studies and presentations on the importance of providing a placental transfusion to the newborn. Early cord clamping is an avoidable, unphysiologic intervention that prevents the natural process of placental transfusion. However, placental transfusion, although simple in concept, is affected by multiple factors, is not always straightforward to implement, and can be performed using different methods, making this basic procedure important to discuss. Here, we review three placental transfusion techniques: delayed cord clamping, intact umbilical cord milking and cut-umbilical cord milking, and the evidence in term and preterm newborns supporting this practice. We will also review several factors that influence placental transfusion, and discuss perceived risks versus benefits of this procedure. Finally, we will provide key straightforward concepts and implementation strategies to ensure that placental-to-newborn transfusion can become routine practice at any institution
    • …
    corecore