169 research outputs found
Cellulose fibres, nanofibrils and microfibrils: The morphological sequence of MFC components from a plant physiology and fibre technology point of view
During the last decade, major efforts have been made to develop adequate and commercially viable processes for disintegrating cellulose fibres into their structural components. Homogenisation of cellulose fibres has been one of the principal applied procedures. Homogenisation has produced materials which may be inhomogeneous, containing fibres, fibres fragments, fibrillar fines and nanofibrils. The material has been denominated microfibrillated cellulose (MFC). In addition, terms relating to the nano-scale have been given to the MFC material. Several modern and high-tech nano-applications have been envisaged for MFC. However, is MFC a nano-structure? It is concluded that MFC materials may be composed of (1) nanofibrils, (2) fibrillar fines, (3) fibre fragments and (4) fibres. This implies that MFC is not necessarily synonymous with nanofibrils, microfibrils or any other cellulose nano-structure. However, properly produced MFC materials contain nano-structures as a main component, i.e. nanofibrils
Effect of hot calendering on physical properties and water vapor transfer resistance of bacterial cellulose films
This work investigates the effect of hot calendering on bacterial cellulose (BC) films properties, aiming the achievement of good transparency and barrier property. A comparison was made using vegetal cellulose (VC) films on a similar basis weight of around 40 g.m-2. The optical-structural, mechanical and barrier property of BC films were studied and compared with those of highly beaten VC films. The Youngs moduli and tensile index of the BC films are much higher than those obtained for VC (14.5 16.2 GPa vs 10.8 8.7 GPa and 146.7 64.8 N.m.g-1 vs 82.8 40.5 N.m.g-1), respectively. Calendering increased significantly the transparency of BC films from 53.0 % to 73.0 %. The effect of BC ozonation was also studied. Oxidation with ozone somewhat enhanced the brightness and transparency of the BC films, but at the expenses of slightly lower mechanical properties. BC films exhibited a low water vapor transfer rate, when compared to VC films and this property decreased by around 70 % following calendering, for all films tested. These results show that calendering could be used as a process to obtain films suitable for food packaging applications, where transparency, good mechanical performance and barrier properties are important. The BC films obtained herein are valuable products that could be a good alternative to the highly used plastics in this industry.The authors thank FCT (Fundação para a CiĂȘncia e Tecnologia) and FEDER (Fundo Europeu de
Desenvolvimento Regional) for the ïŹnancial support of the project FCT PTDC/AGR-FOR/3090/2012â FCOMP-01-0124-FEDER-027948 and the awarding of a research grant for Vera Costa
Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms
The main aim of this work was to assess the influence
of the application of power ultrasound during blanching
of mushrooms (60 90 °C) on the shrinkage, heat transfer, and
quality parameters. Kinetics of mushroom shrinkage was
modeled and coupled to a heat transfer model for conventional
(CB) and ultrasonic-assisted blanching (UB). Cooking value
and the integrated residual enzymatic activity were obtained
through predicted temperatures and related to the hardness and
color variations of mushrooms, respectively. The application
of ultrasound led to an increase of shrinkage and heat transfer
rates, being this increase more intense at low process temperatures.
Consequently, processing time was decreased (30.7
46.0 %) and a reduction in hardness (25.2 40.8 %) and
lightness (13.8 16.8 %) losses were obtained. The best retention
of hardness was obtained by the UB at 60 °C, while to
maintain the lightness it was the CB and UB at 90 °C. For
enhancing both quality parameters simultaneously, a combined
treatment (CT), which consisted of a CB 0.5 min at
90 °C and then an UB 19.9min at 60 °C, was designed. In this
manner, compared with the conventional treatment at 60 °C,
reductions of 39.1, 27.2, and 65.5 % for the process time,
hardness and lightness losses were achieved, respectively.
These results suggest that the CT could be considered as an
interesting alternative to CB in order to reduce the processing
time and improve the overall quality of blanched mushrooms.The authors acknowledge the financial support of Consejo Nacional de Investigaciones Cientificas y Tecnicas and Universidad Nacional de La Plata from Argentina, Erasmus Mundus Action 2-Strand 1 and EuroTango II Researcher Training Program and Ministerio de Economia y Competitividad (SPAIN) and the FEDER (project DPI2012-37466-CO3-03).Lespinard, A.; Bon CorbĂn, J.; CĂĄrcel CarriĂłn, JA.; Benedito Fort, JJ.; Mascheroni, RH. (2015). Effect of Ultrasonic-Assisted Blanching on Size Variation, Heat Transfer, and Quality Parameters of Mushrooms. Food and Bioprocess Technology. 8(1):41-53. https://doi.org/10.1007/s11947-014-1373-zS415381Aguirre, L., Frias, J. M., Barry-Ryan, C., & Grogan, H. (2009). Modelling browning and brown spotting of mushrooms (Agaricus bisporus) stored in controlled environmental conditions using image analysis. Journal of Food Engineering, 91, 280â286.Anantheswaran, R. C., Sastry, S. K., Beelman, R. B., Okereke, A., & Konanayakam, M. (1986). Effect of processing on yield, color, and texture of canned mushrooms. Journal of Food Science, 51(5), 1197â1200.Biekman, E. S. A., Kroese-Hoedeman, H. I., & Schijvens, E. P. H. M. (1996). Loss of solutes during blanching of mushrooms (Agaricus bisporus) as a result of shrinkage and extraction. Journal of Food Engineering, 28(2), 139â152.Biekman, E. S. A., van Remmen, H. H. J., Kroese-Hoedeman, H. I., Ogink, J. J. M., & Schijvens, E. P. H. M. (1997). Effect of shrinkage on the temperature increase in evacuated mushrooms (Agaricus bisporus) during blanching. Journal of Food Engineering, 33(1â2), 87â99.Brennan, M., Le Port, G., & Gormley, R. (2000). Post-harvest treatment with citric acid or hydrogen peroxide to extend the shelf life of fresh sliced mushrooms. Lebensmittel Wissenschaft und Technologie, 33, 285â289.CĂĄrcel, J. A., Benedito, J., RossellĂł, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78, 472â479.CĂĄrcel, J. A., Benedito, J., Bon, J., & Mulet, A. (2007). High intensity ultrasound effects on meat brining. Meat Science, 76, 611â619.CĂĄrcel, J. A., GarcĂa-PĂ©rez, J. V., Benedito, J., & Mulet, A. (2011). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110, 200â207.Cheng, X., Zhang, M., & Adhikari, B. (2013). The inactivation kinetics of polyphenol oxidase in mushroom (Agaricus bisporus) during thermal and thermosonic treatmemts. Ultrasonics Sonochemistry, 20, 674â679.Cliffe-Byrnes, V., & OâBeirne, D. (2007). Effects of gas atmosphere and temperature on the respiration rates of whole and sliced mushrooms (Agaricus bisporus): implications for film permeability in modified atmosphere packages. Journal of Food Science, 72, 197â204.Coskuner, Y., & Ozdemir, Y. (1997). Effects of canning processes on the elements content of cultivated mushrooms (Agaricus bisporus). Food Chemistry, 60(4), 559â562.Cruz, R. M. S., Vieira, M. C., Fonseca, S. C., & Silva, C. L. M. (2011). Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation. Food and Bioprocess Technology, 4(7), 1197â1204.De Gennaro, L., Cavella, S., Romano, R., & Masi, P. (1999). The use of ultrasound in food technology I: inactivation of peroxidase by thermosonication. Journal of Food Engineering, 39, 401â407.De la Fuente, S., Riera, E., Acosta, V. M., Blanco, A., & Gallego-JuĂĄrez, J. A. (2006). Food drying process by power ultrasound. Ultrasonics, 44, 523â527.Delgado, A. E., Zheng, L., & Sun, D. W. (2009). Influence of ultrasound on freezing rate of immersion-frozen apples. Food and Bioprocess Technology, 2, 263â270.Devece, C., RodrĂguez-LĂłpez, J. N., Fenoll, J. T., CatalĂĄ, J. M., De los Reyes, E., & GarcĂa-CĂĄnovas, F. (1999). Enzyme inactivation analysis for industrial blanching applications: comparison of microwave, conventional, and combination heat treatments on mushroom polyphenoloxidase activity. Journal of Agricultural and Food Chemistry, 47(11), 4506â4511.Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: dehydration of banana. Journal of Food Engineering, 82, 261â267.GabaldĂłn-Leyva, C. A., Quintero-Ramos, A., Barnard, J., BalandrĂĄn-Quintana, R. R., TalamĂĄs-Abbud, R., & JimĂ©nez-Castro, J. (2007). Effect of ultrasound on the mass transfer and physical changes in brine bell pepper at different temperatures. Journal of Food Engineering, 81, 374â379.Gallego-JuĂĄrez, J. A., Riera, E., De la Fuente, S., RodrĂguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of high-power ultrasound for dehydration of vegetables: processes and devices. Drying Technology, 25, 1893â1901.Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234, 1071â1079.GarcĂa-PĂ©rez, J. V., CĂĄrcel, J. A., De la Fuente, S., & Riera, E. (2006). Ultrasonic drying of foodstuff in a fluidized bed. Parametric study. Ultrasonics, 44, 539â543.GarcĂa-PĂ©rez, J. V., CĂĄrcel, J. A., Riera, E., RossellĂł, C., & Mulet, A. (2012). Intensification of low-temperature drying by using ultrasound. Drying Technology, 30, 1199â1208.GonzĂĄles-Fandos, E., GimĂ©nez, M., Olarte, C., Sanz, S., & SimĂłn, A. (2000). Effect of packaging conditions on the growth of microorganisms and the quality characteristics of fresh mushrooms (Agaricus bisporus) stored at inadequate temperatures. Journal of Applied Microbiology, 89, 624â632.Gormley, T. R. (1975). Chill storage of mushrooms. Journal of the Science of Food and Agriculture, 26, 401â411.Gouzi, H., Depagne, C., & Coradin, T. (2012). Kinetics and thermodynamics of thermal inactivation of polyfenol oxidase in an aqueous extract from Agaricus bisporus. Journal of Agricultural and Food Chemistry, 60, 500â506.Holdsworth, S. D. (1997). Thermal processing of packaged foods. London: Chapman Hall.HorĆŸiÄ, D., Jambrak, A. R., BelĆĄÄak-CvitanoviÄ, A., Komes, D., & Lelas, V. (2012). Comparison of conventional and ultrasound assisted extraction techniques of yellow tea and bioactive composition of obtained extracts. Food and Bioprocess Technology, 5, 2858â2870.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007a). Ultrasonic effect on pH, electric conductivity, and tissue surface of button mushrooms, brussels sprouts and cauliflower. Czech Journal of Food Science, 25, 90â99.Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007b). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81, 88â97.Jasinski, E. M., Stemberger, B., Walsh, R., & Kilara, A. (1984). Ultra structural studies of raw and processed tissue of the major cultivated mushroom, Agaricus bisporus. Food Microstructure, 3, 191â196.Jolivet, S., Arpin, N., Wicher, H. J., & Pellon, G. (1998). Agaricus bisporus browning: a review. Mycological Research, 102, 1459â1483.Konanayakam, M., & Sastry, S. K. (1988). Kinetics of shrinkage of mushroom during blanching. Journal of Food Science, 53(5), 1406â1411.Kotwaliwale, N., Bakane, P., & Verma, A. (2007). Changes in textural and optical properties of oyster mushroom during hot air drying. Journal of Food Engineering, 78(4), 1207â1211.Leadley C. & Williams A. (2002). Power ultrasoundâcurrent and potential applications for food processing, Review No 32, Campden and Chorleywood Food Research Association.Lespinard, A. R., Goñi, S. M., Salgado, P. R., & Mascheroni, R. H. (2009). Experimental determination and modeling of size variation, heat transfer and quality indexes during mushroom blanching. Journal of Food Engineering, 92, 8â17.Lima, M., & Sastry, S. K. (1990). Influence of fluid rheological properties and particle location on ultrasound-assisted heat transfer between liquid and particles. Journal of Food Science, 55(4), 1112â1115.LĂłpez, P., & Burgos, J. (1995). Peroxidase stability and reactivation after heat treatment and manothermosonication. Journal of Food Science, 60(3), 551â553.LĂłpez, P., Sala, F. J., Fuente, J. L., Cardon, S., Raso, J., & Burgos, J. (1994). Inactivation of peroxidase lipoxigenase and phenol oxidase by manothermosonication. Journal of Agricultural and Food Chemistry, 42(2), 253â256.Mansfield, T. (1962). High temperature-short time sterilization. Proceedings First International Congress on Food Science and Technology, 4, 311â316.Mason T. J. (1998). Power ultrasound in food processingâthe way forward. In M. J. W. Povey & T. J. Mason (Eds.), Ultrasound in Food Processing (pp 103â126). Blackie Academic & Professional, London.McArdle F. J. & Curwen D. (1962). Some factors influencing shrinkage of canned mushrooms. Mushroom Science, 5, 547â557.McArdle, F. J., Kuhn, G. D., & Beelman, R. B. (1974). Influence of vacuum soaking on yield and quality of canned mushrooms. Journal of Food Science, 39, 1026â1028.Mohapatra, D., Bira, Z. M., Kerry, J. P., FrĂas, J. M., & Rodrigues, F. A. (2010). Postharvest hardness and color evolution of White button mushrooms (Agaricus bisporus). Journal of Food Science, 75(3), 146â152.Ohlsson, T. (1980). Temperature dependence of sensory quality changes during thermal processing. Journal of Food Science, 45(4), 836â847.Ortuño, C., MartĂnez-Pastor, M., Mulet, A., & Benedito, J. (2013). Application of high power ultrasound in the supercritical carbon dioxide inactivation of Saccharomyces cerevisiae. Food Research International, 51, 474â481.Peralta-Jimenez, L., & Cañizares-MacĂas, M. P. (2012). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology, 6, 3522â3529.RodrĂguez-LĂłpez, J. N., Fenoll, N. G., Tudela, J., Devece, C., SĂĄnchez-HernĂĄndez, D., De los Reyes, D., et al. (1999). Thermal inactivation of mushroom polyphenoloxidase employing 2450 MHz microwave radiation. Journal of Agricultural Food Chemistry, 47, 3028â3035.Sala, F., Burgos, J., Condon, S., Lopez, P., & Raso, J. (1995). Effect of heat and ultrasound on microorganisms and enzymes. In G. W. Gould (Ed.), New methods of food preservation (1st ed., pp. 176â204). Glasgow: Blackie Academic and professional.SanjuĂĄn, N., Hernando, I., Lluch, M. A., & Mullet, A. (2005). Effects of low temperature blanching on texture, microstructure and rehydration capacity of carrots. Journal of the Science of Food and Agriculture, 85, 2071â2076.Santos, M. V., & Lespinard, A. R. (2011). Numerical simulation of mushrooms during freezing using the FEM and an enthalpyâKirchhoff formulation. Heat and Mass Transfer, 47, 1671â1683.Sastry, S. K., Beelman, R. B., & Speroni, J. J. (1985). A three-dimensional finite element model for thermally induced changes in foods: application to degradation of agaritine in canned mushrooms. Journal of Food Science, 50(5), 1293â1299.Sastry, S. K., Shen, G. Q., & Blaisdel, J. L. (1989). Effect of ultrasonic vibration on fluid-to-particule convective heat transfer coefficients. Journal of Food Science, 54(1), 229â230.Sensoy, I., & Sastry, S. K. (2004). Ohmic blanching of mushrooms. Journal of Food Process Engineering, 27(1), 1â15.Sheen, S., & Hayakawa, K. (1991). Finite difference simulation for heat conduction with phase change in an irregular food domain with volumetric change. International Journal of Heat and Mass Transfer, 34(6), 1337â1346.Simal, S., Benedito, J., Sanchez, E. S., & Rossello, C. (1998). Use of ultrasound to increase mass transport rates during osmotic dehydration. Journal of Food Engineering, 36, 323â336.SirĂł, I., VĂ©n, C., Balla, C., JĂłnĂĄs, G., Zeke, I., & Friedrich, L. (2009). Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat. Journal of Food Engineering, 91, 353â362.Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity in foods: a review. Trends in Food Science and Technology, 21, 323â331.Verlinden, B. E., Yuksel, D., Baheri, M., De Baerdemaeker, J., & Van Dijk, C. (2000). Low temperature blanching effect on the changes in mechanical properties during subsequent cooking of three potato cultivars. International Journal of Food Science and Technology, 35, 331â340.Wu, C. M., Wu, J. L.-P., Chen, C.-C., & Chou, C.-C. (1981). Flavor recovery from mushroom blanching water. In G. Charalambous & G. Inglett (Eds.), The quality of foods and beverages: chemistry and technology, vol. 1. New York: Academic Press.Zivanovic, S., & Buescher, R. (2004). Changes in mushroom texture and cell wall composition affected by thermal processing. Journal of Food Science, 69, 44â48
An overview of the recent developments on fructooligosaccharide production and applications
Over the past years, many researchers have suggested
that deficiencies in the diet can lead to disease states
and that some diseases can be avoided through an adequate
intake of relevant dietary components. Recently, a great interest
in dietary modulation of the human gut has been registered.
Prebiotics, such as fructooligosaccharides (FOS), play a key
role in the improvement of gut microbiota balance and in
individual health. FOS are generally used as components of
functional foods, are generally regarded as safe (generally
recognized as safe statusâfrom the Food and Drug Administration,
USA), and worth about 150⏠per kilogram. Due to
their nutrition- and health-relevant properties, such as moderate
sweetness, low carcinogenicity, low calorimetric value,
and low glycemic index, FOS have been increasingly used
by the food industry. Conventionally, FOS are produced
through a two-stage process that requires an enzyme production
and purification step in order to proceed with the chemical
reaction itself. Several studies have been conducted on the
production of FOS, aiming its optimization toward the development
of more efficient production processes and their potential
as food ingredients. The improvement of FOS yield and
productivity can be achieved by the use of different fermentative
methods and different microbial sources of FOS producing
enzymes and the optimization of nutritional and
culture parameter; therefore, this review focuses on the latest
progresses in FOS research such as its production, functional
properties, and market data.Agencia de Inovacao (AdI)-Project BIOLIFE reference PRIME 03/347. Ana Dominguez acknowledges Fundacao para a Ciencia e a Tecnologia, Portugal, for her PhD grant reference SFRH/BD/23083/2005
- âŠ