6,097 research outputs found
Glueball Spin
The spin of a glueball is usually taken as coming from the spin (and possibly
the orbital angular momentum) of its constituent gluons. In light of the
difficulties in accounting for the spin of the proton from its constituent
quarks, the spin of glueballs is reexamined. The starting point is the
fundamental QCD field angular momentum operator written in terms of the
chromoelectric and chromomagnetic fields. First, we look at the restrictions
placed on the structure of glueballs from the requirement that the QCD field
angular momentum operator should satisfy the standard commutation
relationships. This can be compared to the electromagnetic charge/monopole
system, where the quantization of the field angular momentum places
restrictions (i.e. the Dirac condition) on the system. Second, we look at the
expectation value of this operator under some simplifying assumptions.Comment: 11 pages, 0 figures; added references and some discussio
A statistical model for the intrinsically broad superconducting to normal transition in quasi-two-dimensional crystalline organic metals
Although quasi-two-dimensional organic superconductors such as
-(BEDT-TTF)Cu(NCS) seem to be very clean systems, with apparent
quasiparticle mean-free paths of several thousand \AA, the superconducting
transition is intrinsically broad (e.g K wide for K).
We propose that this is due to the extreme anisotropy of these materials, which
greatly exacerbates the statistical effects of spatial variations in the
potential experienced by the quasiparticles. Using a statistical model, we are
able to account for the experimental observations. A parameter , which
characterises the spatial potential variations, may be derived from
Shubnikov-de Haas oscillation experiments. Using this value, we are able to
predict a transition width which is in good agreement with that observed in MHz
penetration-depth measurements on the same sample.Comment: 8 pages, 2 figures, submitted to J. Phys. Condens. Matte
Studies of vertical wind profiles at Cape Kennedy, Florida Final report
Vertical wind profiles spectral analysis and numerical wind forecasts at Cape Kenned
Quantum Oscillations in the Underdoped Cuprate YBa2Cu4O8
We report the observation of quantum oscillations in the underdoped cuprate
superconductor YBa2Cu4O8 using a tunnel-diode oscillator technique in pulsed
magnetic fields up to 85T. There is a clear signal, periodic in inverse field,
with frequency 660+/-15T and possible evidence for the presence of two
components of slightly different frequency. The quasiparticle mass is
m*=3.0+/-0.3m_e. In conjunction with the results of Doiron-Leyraud et al. for
YBa2Cu3O6.5, the present measurements suggest that Fermi surface pockets are a
general feature of underdoped copper oxide planes and provide information about
the doping dependence of the Fermi surface.Comment: Contains revisions addressing referees' comments including a
different Fig 1b. 4 pages, 4 figure
Very weak electron-phonon coupling and strong strain coupling in manganites
The coupling of the manganite stripe phase to the lattice and to strain has
been investigated via transmission electron microscopy studies of
polycrystalline and thin film manganites. In polycrystalline \PCMOfiftwo a
lockin to in a sample with has been observed for the first
time. Such a lockin has been predicted as a key part of the Landau CDW theory
of the stripe phase. Thus it is possible to constrain the size of the
electron-phonon coupling in the CDW Landau theory to between 0.04% and 0.05% of
the electron-electron coupling term. In the thin film samples, films of the
same thickness grown on two different substrates exhibited different
wavevectors. The different strains present in the films on the two substrates
can be related to the wavevector observed via Landau theory. It is demonstrated
that the the elastic term which favours an incommensurate modulation has a
similar size to the coupling between the strain and the wavevector, meaning
that the coupling of strain to the superlattice is unexpectedly strong.Comment: 6 pages, 7 figure
Advanced study of coastal zone oceanographic requirements for ERTS E and F
Earth Resources Technology Satellites E and F orbits and remote sensor instruments for coastal oceanographic data collectio
On the relation between Unruh and Sokolov--Ternov effects
We show that the Sokolov--Ternov effect -- the depolarization of particles in
storage rings coming from synchrotron radiation due to spin flip transitions --
is physically equivalent to the Unruh effect for circular acceleration if one
uses a spin 1/2 particle as the Unruh--DeWitt detector. It is shown that for
the electron, with gyromagnetic number , the exponential
contribution to the polarization, which usually characterizes the Unruh effect,
is "hidden" in the standard Sokolov-Ternov effect making it hard to observe.
Thus, our conclusions are different in detail from previous work.Comment: 23 pages, no figure
Unconventional superconducting phases in a correlated two-dimensional Fermi gas of nonstandard quasiparticles: a simple model
We discuss a detailed phase diagram and other microscopic characteristics on
the applied magnetic field - temperature (H_a-T) plane for a simple model of
correlated fluid represented by a two-dimensional (2D) gas of heavy
quasiparticles with masses dependent on the spin direction and the effective
field generated by the electron correlations. The consecutive transitions
between the Bardeen-Cooper-Schrieffer (BCS) and the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases are either continuous or
discontinuous, depending on the values of H_a and T. In the latter case, weak
metamagnetic transitions occur at the BCS-FFLO boundary. We single out two
different FFLO phases, as well as a reentrant behaviour of one of them at high
fields. The results are compared with those for ordinary Landau quasiparticles
in order to demonstrate the robustness of the FFLO states against the BCS state
for the case with spin-dependent masses (SDM). We believe that the mechanism of
FFLO stabilization by SDM is generic: other high-field low-temperature (HFLT)
superconducting phases benefit from SDM as well.Comment: 10 pages, 4 figure
Causal effects of an absent crowd on performances and refereeing decisions during Covid-19
The Covid-19 pandemic has induced worldwide natural experiments on the effects of crowds. We exploit one of these experiments that took place over several countries in almost identical settings: professional football matches played behind closed doors within the 2019/20 league seasons. We find large and statistically significant effects on the number of yellow cards issued by referees. Without a crowd, fewer cards were awarded to the away teams, reducing home advantage. These results have implications for the influence of social pressure and crowds on the neutrality of decisions
- …