22,337 research outputs found
Radiation Damping Effects in Two Level Maser Oscillators
Several experiments [1,2] have noted recently that when an inverted two-level spin system was permitted to radiate spontaneously, the resulting oscillation was characterized by an appreciable amplitude modulation. The phenomenon was first believed to be the result of interference of different spin packets in an inhomogeneously broadened spectrum [1]. A theoretical analysis (which will be reported separately) shows that this is not the case. The spins are not independent but are coupled together by means of their radiation field. This explanation has since been by its original authors
Spectral effects of dehydration on phyllosilicates
Six phyllosilicates were progressively dehydrated under controlled conditions in an effort to study the spectral effects of their dehydration. The spectra obtained at each level of hydration provide information that may be used in future spectroscopic observations of the planets, as well as a data set which compliments the existing body of terrestrial soil knowledge
Mining Missing Hyperlinks from Human Navigation Traces: A Case Study of Wikipedia
Hyperlinks are an essential feature of the World Wide Web. They are
especially important for online encyclopedias such as Wikipedia: an article can
often only be understood in the context of related articles, and hyperlinks
make it easy to explore this context. But important links are often missing,
and several methods have been proposed to alleviate this problem by learning a
linking model based on the structure of the existing links. Here we propose a
novel approach to identifying missing links in Wikipedia. We build on the fact
that the ultimate purpose of Wikipedia links is to aid navigation. Rather than
merely suggesting new links that are in tune with the structure of existing
links, our method finds missing links that would immediately enhance
Wikipedia's navigability. We leverage data sets of navigation paths collected
through a Wikipedia-based human-computation game in which users must find a
short path from a start to a target article by only clicking links encountered
along the way. We harness human navigational traces to identify a set of
candidates for missing links and then rank these candidates. Experiments show
that our procedure identifies missing links of high quality
Nanotrapping and the thermodynamics of optical tweezers
Particles that can be trapped in optical tweezers range from tens of microns
down to tens of nanometres in size. Interestingly, this size range includes
large macromolecules. We show experimentally, in agreement with theoretical
expectations, that optical tweezers can be used to manipulate single molecules
of polyethylene oxide suspended in water. The trapped molecules accumulate
without aggregating, so this provides optical control of the concentration of
macromolecules in solution. Apart from possible applications such as the
micromanipulation of nanoparticles, nanoassembly, microchemistry, and the study
of biological macromolecules, our results also provide insight into the
thermodynamics of optical tweezers.Comment: 5 pages, 3 figures, presented at 17th AIP Congress, Brisbane, 200
Specific Nature of Hydrolysis of Insulin and Tobacco Mosaic Virus Protein by Thermolysin
Oxidized bovine insulin and tobacco mosaic virus protein used to determine hydrolysis specificity of thermolysi
Representation theoretic patterns in three dimensional Cryo-Electron Microscopy I: The intrinsic reconstitution algorithm
In this paper, we reveal the formal algebraic structure underlying the intrinsic reconstitution algorithm, introduced by Singer and Shkolnisky in [9], for determining three dimensional macromolecular structures from images obtained by an electron microscope. Inspecting this algebraic structure, we obtain a conceptual explanation for the admissibility (correctness) of the algorithm and a proof of its numerical stability. In addition, we explain how the various numerical observations reported in that work follow from basic representation theoretic principles
Sympathetic Cooling of Lithium by Laser-cooled Cesium
We present first indications of sympathetic cooling between two neutral,
optically trapped atomic species. Lithium and cesium atoms are simultaneously
stored in an optical dipole trap formed by the focus of a CO laser, and
allowed to interact for a given period of time. The temperature of the lithium
gas is found to decrease when in thermal contact with cold cesium. The
timescale of thermalization yields an estimate for the Li-Cs cross-section.Comment: 4 pages, proceedings of ICOLS 200
(13)C NMR investigation of the superconductor MgCNi_3 up to 800K
We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et
al., Nature (411), 54 (2001)). We found that both the uniform spin
susceptibility and the spin fluctuations show a strong enhancement with
decreasing temperature, and saturate below ~50K and ~20K respectively. The
nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for
isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that
grows with decreasing magnetic field.Comment: Accepted for publication in Physical Review Letter
Mixture of ultracold lithium and cesium atoms in an optical dipole trap
We present the first simultaneous trapping of two different ultracold atomic
species in a conservative trap. Lithium and cesium atoms are stored in an
optical dipole trap formed by the focus of a CO laser. Techniques for
loading both species of atoms are discussed and observations of elastic and
inelastic collisions between the two species are presented. A model for
sympathetic cooling of two species with strongly different mass in the presence
of slow evaporation is developed. From the observed Cs-induced evaporation of
Li atoms we estimate a cross section for cold elastic Li-Cs collisions.Comment: 10 pages 9 figures, submitted to Appl. Phys. B; v2: Corrected
evaporation formulas and some postscript problem
- …