28,860 research outputs found
Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes
We present the first experimental study that maps the transformation of
nuclear quadrupole resonances from the pure nuclear quadrupole regime to the
quadrupole-perturbed Zeeman regime. The transformation presents an interesting
quantum-mechanical problem, since the quantization axis changes from being
aligned along the axis of the electric-field gradient tensor to being aligned
along the magnetic field. We achieve large nuclear quadrupole shifts for I =
3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When
the magnetic and quadrupolar interactions are of comparable size, perturbation
theory is not suitable for calculating the transition energies. Rather than use
perturbation theory, we compare our data to theoretical calculations using a
Liouvillian approach and find excellent agreement.Comment: 4 pages, 4 figure
Optimising the assessment of cerebral autoregulation from black box models
Cerebral autoregulation (CA) mechanisms maintain blood flow approximately stable despite changes in arterial blood pressure. Mathematical models that characterise this system have been used extensively in the quantitative assessment of function/impairment of CA. Using spontaneous fluctuations in arterial blood pressure (ABP) as input and cerebral blood flow velocity (CBFV) as output, the autoregulatory mechanism can be modelled using linear and non-linear approaches, from which indexes can be extracted to provide an overall assessment of CA. Previous studies have considered a single – or at most a couple of measures, making it difficult to compare the performance of different CA parameters. We compare the performance of established autoregulatory parameters and propose novel measures. The key objective is to identify which model and index can best distinguish between normal and impaired CA. To this end 26 recordings of ABP and CBFV from normocapnia and hypercapnia (which temporarily impairs CA) in 13 healthy adults were analysed. In the absence of a ‘gold’ standard for the study of dynamic CA, lower inter- and intra-subject variability of the parameters in relation to the difference between normo- and hypercapnia were considered as criteria for identifying improved measures of CA. Significantly improved performance compared to some conventional approaches was achieved, with the simplest method emerging as probably the most promising for future studies
A study of the usefulness of Skylab EREP data for earth resources studies in Australia
There are no author-identified significant results in this report
An LDEF 2 dust instrument for discrimination between orbital debris and natural particles in near-Earth space
The characteristics of a space dust instrument which would be ideally suited to carry out near-Earth dust measurements on a possible Long Duraction Exposure Facility reflight mission (LDEF 2) is discussed. As a model for the trajectory portion of the instrument proposed for LDEF 2, the characteristics of a SPAce DUSt instrument (SPADUS) currently under development for flight on the USA ARGOS mission to measure the flux, mass, velocity, and trajectory of near-Earth dust is summarized. Since natural (cosmic) dust and man-made dust particles (orbital debris) have different velocity and trajectory distributions, they are distinguished by means of the SPADUS velocity/trajectory information. The SPADUS measurements will cover the dust mass range approximately 5 x 10(exp -12) g (2 microns diameter) to approximately 1 x 10(exp -5) g (200 microns diameter), with an expected mean error in particle trajectory of approximately 7 deg (isotropic flux). Arrays of capture cell devices positioned behind the trajectory instrumentation would provide for Earth-based chemical and isotopic analysis of captured dust. The SPADUS measurement principles, characteristics, its role in the ARGOS mission, and its application to an LDEF 2 mission are summarized
Two quantum Simpson's paradoxes
The so-called Simpson's "paradox", or Yule-Simpson (YS) effect, occurs in
classical statistics when the correlations that are present among different
sets of samples are reversed if the sets are combined together, thus ignoring
one or more lurking variables. Here we illustrate the occurrence of two
analogue effects in quantum measurements. The first, which we term
quantum-classical YS effect, may occur with quantum limited measurements and
with lurking variables coming from the mixing of states, whereas the second,
here referred to as quantum-quantum YS effect, may take place when coherent
superpositions of quantum states are allowed. By analyzing quantum measurements
on low dimensional systems (qubits and qutrits), we show that the two effects
may occur independently, and that the quantum-quantum YS effect is more likely
to occur than the corresponding quantum-classical one. We also found that there
exist classes of superposition states for which the quantum-classical YS effect
cannot occur for any measurement and, at the same time, the quantum-quantum YS
effect takes place in a consistent fraction of the possible measurement
settings. The occurrence of the effect in the presence of partial coherence is
discussed as well as its possible implications for quantum hypothesis testing.Comment: published versio
The Effect of Ambient Temperature on Cold Start Urban Traffic Emissions for a Real World SI Car
The influence of ambient temperature on exhaust
emissions for an instrumented Euro 1 SI car was
determined. A real world test cycle was used, based on
an urban drive cycle that was similar to the ECE urban
drive cycle. It was based on four laps of a street circuit
and an emissions sample bag was taken for each lap.
The bag for the first lap was for the cold start emissions.
An in-vehicle direct exhaust dual bag sampling
technique was used to simultaneously collect exhaust
samples upstream and downstream of the three-way
catalyst (TWC). The cold start tests were conducted
over a year, with ambient temperatures ranging from –
2°C to 32°C. The exhaust system was instrumented with
thermocouples so that the catalyst light off temperature
could be determined. The results showed that CO
emissions for the cold start were reduced by a factor of
8 downstream of catalyst when ambient temperature
rose from -2°C to 32°C, the corresponding hydrocarbon
emissions were reduced by a factor of 4. There was no
clear relationship between NOx emissions and ambient
temperature. For subsequent laps of the test circuit the
reduction of CO and HC emissions as a function of
ambient temperature was lower. The time for catalyst
light off increased by 50% as the ambient temperature
was reduced. The results show that the vehicle used is
unlikely to meet the new – 7oC cold start CO emission
regulations
Using Cuticular Wax Alkanes and Computer Simulation to Estimate Diet Selection, Herbage Intake and Nutrient Cycling in Grazing Sheep
In grazing ewes, plant cuticular wax alkanes were used as markers to estimate diet selection, herbage intake, N intake and N excretion in faeces. Pasture and animal data were then used as inputs to the decision-support system GrazFeed, which simulates grazing and digestion to predict herbage intake, N intake and N excretion. Estimated and predicted intakes agreed closely, especially for N intake, and it is concluded that, subject to further investigation of the possibility that GrazFeed slightly under-estimated faecal N excretion, the close agreement between estimated and predicted OM and N intakes suggests that this combined use of alkane methods and simulation could provide a simple means of estimating the urinary return of N or other nutrients to pasture
Constraints on radiative decay of the 17-keV neutrino from COBE Measurements
It is shown that, for a nontrivial radiative decay channel of the 17-keV
neutrino, the photons would distort the microwave background radiation through
ionization of the universe. The constraint on the branching ratio of such
decays from COBE measurements is found to be more stringent than that from
other considerations. The limit on the branching ratio in terms of the Compton
parameter is for an
universe.Comment: 7 pages. (figures will be sent on request) (To appear in Phys. Rev.
D.
The ionization structure of the Orion nebula: Infrared line observations and models
Observations of the (O III) 52 and 88 micron lines and the (N III) 57 micron line have been made at 6 positions and the (Ne III) 36 micron line at 4 positions in the Orion Nebula to probe its ionization structure. The measurements, made with a -40" diameter beam, were spaced every 45" in a line south from and including the Trapezium. The wavelength of the (Ne III) line was measured to be 36.013 + or - 0.004 micron. Electron densities and abundance ratios of N(++)/O(++) have been calculated and compared to other radio and optical observations. Detailed one component and two component (bar plus halo) spherical models were calculated for exciting stars with effective temperatures of 37 to 40,000K and log g = 4.0 and 4.5. Both the new infrared observations and the visible line measurements of oxygen and nitrogen require T sub eff approx less than 37,000K. However, the double ionized neon requires a model with T sub eff more than or equal to 39,000K, which is more consistent with that inferred from the radio flux or spectral type. These differences in T sub eff are not due to effects of dust on the stellar radiation field, but are probably due to inaccuracies in the assumed stellar spectrum. The observed N(++)/O(++) ratio is almost twice the N(+)/O(+) ratio. The best fit models give N/H = 8.4 x 10 to the -5 power, O/H = 4.0 x 10 to the -4 power, and Ne/H = 1.3 x 10 to the -4 power. Thus neon and nitrogen are approximately solar, but oxygen is half solar in abundance. From the infrared O(++) lines it is concluded that the ionization bar results from an increase in column depth rather than from a local density enhancement
- …