38,486 research outputs found

    Canonical Quantization of the Maxwell-Chern-Simons Theory in the Coulomb Gauge

    Get PDF
    The Maxwell-Chern-Simons theory is canonically quantized in the Coulomb gauge by using the Dirac bracket quantization procedure. The determination of the Coulomb gauge polarization vector turns out to be intrincate. A set of quantum Poincar\'e densities obeying the Dirac-Schwinger algebra, and, therefore, free of anomalies, is constructed. The peculiar analytical structure of the polarization vector is shown to be at the root for the existence of spin of the massive gauge quanta.The Coulomb gauge Feynman rules are used to compute the M\"oller scattering amplitude in the lowest order of perturbation theory. The result coincides with that obtained by using covariant Feynman rules. This proof of equivalence is, afterwards, extended to all orders of perturbation theory. The so called infrared safe photon propagator emerges as an effective propagator which allows for replacing all the terms in the interaction Hamiltonian of the Coulomb gauge by the standard field-current minimal interaction Hamiltonian.Comment: 21 pages, typeset in REVTEX, figures not include

    The Low Energy Limit of the Chern-Simons Theory Coupled to Fermions

    Get PDF
    We study the nonrelativistic limit of the theory of a quantum Chern--Simons field minimally coupled to Dirac fermions. To get the nonrelativistic effective Lagrangian one has to incorporate vacuum polarization and anomalous magnetic moment effects. Besides that, an unsuspected quartic fermionic interaction may also be induced. As a by product, the method we use to calculate loop diagrams, separating low and high loop momenta contributions, allows to identify how a quantum nonrelativistic theory nests in a relativistic one.Comment: 18 pages, 8 figures, Late

    Duality Symmetry in the Schwarz-Sen Model

    Full text link
    The continuous extension of the discrete duality symmetry of the Schwarz-Sen model is studied. The corresponding infinitesimal generator QQ turns out to be local, gauge invariant and metric independent. Furthermore, QQ commutes with all the conformal group generators. We also show that QQ is equivalent to the non---local duality transformation generator found in the Hamiltonian formulation of Maxwell theory. We next consider the Batalin--Fradkin-Vilkovisky formalism for the Maxwell theory and demonstrate that requiring a local duality transformation lead us to the Schwarz--Sen formulation. The partition functions are shown to be the same which implies the quantum equivalence of the two approaches.Comment: 10 pages, latex, small changes, final version to appear in Phys. Rev.

    The class of n-entire operators

    Full text link
    We introduce a classification of simple, regular, closed symmetric operators with deficiency indices (1,1) according to a geometric criterion that extends the classical notions of entire operators and entire operators in the generalized sense due to M. G. Krein. We show that these classes of operators have several distinctive properties, some of them related to the spectra of their canonical selfadjoint extensions. In particular, we provide necessary and sufficient conditions on the spectra of two canonical selfadjoint extensions of an operator for it to belong to one of our classes. Our discussion is based on some recent results in the theory of de Branges spaces.Comment: 33 pages. Typos corrected. Changes in the wording of Section 2. References added. Examples added. arXiv admin note: text overlap with arXiv:1104.476

    Large angle magnetization dynamics measured by time-resolved ferromagnetic resonance

    Full text link
    A time-resolved ferromagnetic resonance technique was used to investigate the magnetization dynamics of a 10 nm thin Permalloy film. The experiment consisted of a sequence of magnetic field pulses at a repetition rate equal to the magnetic systems resonance frequency. We compared data obtained by this technique with conventional pulsed inductive microwave magnetometry. The results for damping and frequency response obtained by these two different methods coincide in the limit of a small angle excitation. However, when applying large amplitude field pulses, the magnetization had a non-linear response. We speculate that one possible cause of the nonlinearity is related to self-amplification of incoherence, known as the Suhl instabilities.Comment: 23 pages, 8 figures, submitted to PR

    Some properties of two Nambu--Jona-Lasinio -type models with inputs from lattice QCD

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio (PNJL) model at finite temperature and nonzero chemical potential. The calculations are performed in the light and strange quark sectors (uu, dd, ss), which includes the 't Hooft instanton induced interaction term that breaks the axial symmetry, and the quarks are coupled to the (spatially constant) temporal background gauge field. On one hand, a special attention is payed to the critical end point (CEP). The strength of the flavor-mixing interaction alters the CEP location, since when it becomes weaker the CEP moves to low temperatures and can even disappear. On the other hand, we also explore the connection between QCD, a nonlocal Nambu--Jona-Lasinio type model and the Landau gauge gluon propagator. Possible links between the quenched gluon propagator and low energy hadronic phenomenology are investigated.Comment: Contribution to the International Meeting "Excited QCD", Peniche, Portugal, 06 - 12 May 201

    Parabolic dunes in north-eastern Brazil

    Full text link
    In this work we present measurements of vegetation cover over parabolic dunes with different degree of activation along the north-eastern Brazilian coast. We are able to extend the local values of the vegetation cover density to the whole dune by correlating measurements with the gray-scale levels of a high resolution satellite image of the dune field. The empirical vegetation distribution is finally used to validate the results of a recent continuous model of dune motion coupling sand erosion and vegetation growth.Comment: 18 pages, 14 figures, aubmitted to Geomorpholog

    The Noncommutative Supersymmetric Nonlinear Sigma Model

    Get PDF
    We show that the noncommutativity of space-time destroys the renormalizability of the 1/N expansion of the O(N) Gross-Neveu model. A similar statement holds for the noncommutative nonlinear sigma model. However, we show that, up to the subleading order in 1/N expansion, the noncommutative supersymmetric O(N) nonlinear sigma model becomes renormalizable in D=3. We also show that dynamical mass generation is restored and there is no catastrophic UV/IR mixing. Unlike the commutative case, we find that the Lagrange multiplier fields, which enforce the supersymmetric constraints, are also renormalized. For D=2 the divergence of the four point function of the basic scalar field, which in D=3 is absent, cannot be eliminated by means of a counterterm having the structure of a Moyal product.Comment: 15 pages, 7 figures, revtex, minor modifications in the text, references adde
    • 

    corecore