33 research outputs found

    Chitosan Cross-linked Pentasodium Tripolyphosphate Micro/nanoparticles Produced By Ionotropic Gelation

    No full text
    Chitosan cross-linked pentasodium tripolyphosphate particles were produced by ionotropic gelation. The aim of this study was to evaluate the influence of the molar mass and deacetylation degree of chitosan and of the concentration of pentasodium tripolyphosphate in the production of chitosan micro/nanoparticles. The obtained charge ratio (R±), mean particle size, surface electrical charge, polydispersity index, and tendency of particle aggregation were selected as dependent variables. Results demonstrated that stable particles exhibited a high zeta potential value, between +62 and +68 mV. Particles were produced in different size ranges controlling the R± between the positively charged chitosan and negatively charged pentasodium tripolyphosphate. Chitosan micro/nanoparticles were successfully prepared via the ionic gelation method controlling R±, therefore the association of an active ingredient to a micro/nanoparticle allows the molecule to intimately interact with specific structures, to overcome barriers and to prolong its residence time in the target. Chitosan cross-linked pentasodium tripolyphosphate particles are expected to be a good approach for active ingredients formulation in the agrofood sector and related industries

    Effectiveness, Against Tuberculosis, Of Pseudo-ternary Complexes: Peptide-dna-cationic Liposome

    No full text
    We report the effects of a synthetic peptide designed to act as a nuclear localization signal on the treatment of tuberculosis. The peptide contains 21 amino acid residues with the following specific domains: nuclear localization signal from SV 40T, cationic shuttle sequence, and cysteamide group at the C-terminus. The peptide was complexed with the plasmid DNAhsp65 and incorporated into cationic liposomes, forming a pseudo-ternary complex. The same cationic liposomes, composed of egg chicken l-α-phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, and 1,2-dioleoyl-3-trimethylammonium-propane (2:1:1. M), were previously evaluated as a gene carrier for tuberculosis immunization protocols with DNAhsp65. The pseudo-ternary complex presented a controlled size (250. nm), spherical-like shape, and various lamellae in liposomes as evaluated by transmission electron microscopy. An assay of fluorescence probe accessibility confirmed insertion of the peptide/DNA into the liposome structure. Peptide addition conferred no cytotoxicity in vitro, and similar therapeutic effects against tuberculosis were seen with four times less DNA compared with naked DNA treatment. Taken together, the results indicate that the pseudo-ternary complex is a promising gene vaccine for tuberculosis treatment. This work contributes to the development of multifunctional nanostructures in the search for strategies for in vivo DNA delivery. © 2011 Elsevier Inc..3731102109Gomes, D.C.D., Pinto, E.F., de Melo, L.D.B., Lima, W.P., Larraga, V., Lopes, U.G., Rossi-Bergmann, B., (2007) Vaccine, 25, p. 2168Bao, L., Gao, L., Bao, Y., (2010) Int. J. Infect. Dis., 14, pp. E446Han, D.J., Weiner, D.B., Sin, J.I., (2010) Biomol. Ther., 18, p. 1Lowrie, D.B., Tascon, R.E., Bonato, V.L.D., Lima, V.M.F., Faccioli, L.H., Stavropoulos, E., Colston, M.J., Silva, C.L., (1999) Nature, 400, p. 269Liu, M.A., (2011) Immunol. Rev., 239, p. 62Rolland, A., (2005) Adv. Drug Delivery Rev., 57, p. 669Labas, R., Beilvert, F., Barteau, B., David, S., Chevre, R., Pitard, B., (2010) Genetica, 138, p. 153Gao, X., Huang, L., (1995) Gene Ther., 2, p. 710Xu, Y.H., Szoka, F.C., (1996) Biochemistry, 35, p. 5616Zhou, X.H., Huang, L., (1994) Biochim. Biophys. Acta, Biomembr., 1189, p. 195LabatMoleur, F., Steffan, A.M., Brisson, C., Perron, H., Feugeas, O., Furstenberger, P., Oberling, F., Behr, J.P., (1996) Gene Ther., 3, p. 1010Mintzer, M.A., Simanek, E.E., (2009) Chem. Rev., 109, p. 259Lam, A.P., Dean, D.A., (2010) Gene Ther., 17, p. 439Munkonge, F.M., Dean, D.A., Hillery, E., Griesenbach, U., Alton, E., (2003) Adv. Drug Delivery Rev., 55, p. 749Lang, I., Scholz, M., Peters, R., (1986) J. Cell Biol., 102, p. 1183Ludtke, J.J., Zhang, G.F., Sebestyen, M.G., Wolff, J.A., (1999) J. Cell Sci., 112, p. 2033Byrnes, C.K., Nass, P.H., Shim, J., Duncan, M.D., Lacy, B., Harmon, J.W., (2002) J. Gastrointest. Surg., 6, p. 37Miller, A.M., Dean, D.A., (2009) Adv. Drug Delivery Rev., 61, p. 603Byrnes, C.K., Nass, P.H., Duncan, M.D., Harmon, J.W., (2002) J. Surg. Res., 108, p. 85Rea, J.C., Gibly, R.F., Barron, A.E., Shea, L.D., (2009) Acta Biomater., 5, p. 903Schirmbeck, R., Konig-Merediz, S.A., Riedl, P., Kwissa, M., Sack, F., Schroff, M., Junghans, C., Wittig, B., (2001) J. Mol. Med. - JMM, 79, p. 343Lopez-Fuertes, L., Perez-Jimenez, E., Vila-Coro, A.J., Sack, F., Moreno, S., Konig, S.A., Junghans, C., Esteban, M., (2002) Vaccine, 21, p. 247Lowrie, D.B., Silva, C.L., Colston, M.J., Ragno, S., Tascon, R.E., (1997) Vaccine, 15, p. 834Silva, C.L., Lowrie, D.B., (1994) Immunology, 82, p. 244Silva, C.L., Silva, M.F., Pietro, R.C., Lowrie, D.B., (1994) Immunology, 83, p. 341Lowrie, D.B., Tascon, R.E., Bonato, V.L., Lima, V.M., Faccioli, L.H., Stavropoulos, E., Colston, M.J., Silva, C.L., (1999) Nature, 400, p. 269Silva, C.L., (1999) Microbes Infect., 1, p. 429Bonato, V.L., Lima, V.M., Tascon, R.E., Lowrie, D.B., Silva, C.L., (1998) Infect. Immun., 66, p. 169Zarate-Blades, C.R., Silva, C.L., Passos, G.A., (2011) Clin. Dev. Immunol., 2011, p. 192630Zarate-Blades, C.R., Bonato, V.L., da Silveira, E.L., Oliveira e Paula, M., Junta, C.M., Sandrin-Garcia, P., Fachin, A.L., Silva, C.L., (2009) J. Gene Med., 11, p. 66Perrie, Y., Frederik, P.M., Gregoriadis, G., (2001) Vaccine, 19, p. 3301Rosada, R.S., de la Torre, L.G., Frantz, F.G., Trombone, A.P.F., Zarate-Blades, C.R., Fonseca, D.M., Souza, P.R.M., Coelho-Castelo, A.A.M., (2008) BMC Immunol., 9, p. 13de la Torre, L.G., Rosada, R.S., Trombone, A.P.F., Frantz, F.G., Coelho-Castelo, A.A.M., Silva, C.L., Santana, M.H.A., (2009) Colloids Surf., B, 73, p. 175Nakaie, C.R., Oliveira, E., Vicente, E.F., Jubilut, G.N., Souza, S.E., Marchetto, R., Cilli, E.M., (2011) Bioorg. Chem., 39, p. 101Kalderon, D., Roberts, B.L., Richardson, W.D., Smith, A.E., (1984) Cell, 39, p. 499Subramanian, A., Ranganathan, P., Diamond, S.L., (1999) Nat. Biotechnol., 17, p. 873McKenzie, D.L., Kwok, K.Y., Rice, K.G., (2000) J. Biol. Chem., 275, p. 9970Simeoni, F., Morris, M.C., Heitz, F., Divita, G., (2003) Nucleic Acids Res., 31, p. 2717Wetzer, B., Byk, G., Frederic, M., Airiau, M., Blanche, F., Pitard, B., Scherman, D., (2001) Biochem. J., 356, p. 747Eastman, S.J., Siegel, C., Tousignant, J., Smith, A.E., Cheng, S.H., Scheule, R.K., (1997) Biochim. Biophys. Acta, Biomembr., 1325, p. 41Ferrari, M.E., Rusalov, D., Enas, J., Wheeler, C.J., (2001) Nucleic Acids Res., 29, p. 1539Denizot, F., Lang, R., (1986) J. Immunol. Methods, 89, p. 271Kvach, J.T., Veras, J.R., (1982) Int. J. Lepr. Other Mycobact. Dis., 50, p. 183Bonato, V.L., Goncalves, E.D., Soares, E.G., Santos Junior, R.R., Sartori, A., Coelho-Castelo, A.A., Silva, C.L., (2004) Immunology, 113, p. 130Christensen, D., Korsholm, K.S., Rosenkrands, I., Lindenstrom, T., Andersen, P., Agger, E.M., (2007) Expert Rev. Vaccines, 6, p. 785Saito, S., Matsuura, M., Hirai, Y., (2006) Clin. Vaccine Immunol., 13, p. 876Rosada, R.S., de la Torre, L.G., Frantz, F.G., Trombone, A.P., Zarate-Blades, C.R., Fonseca, D.M., Souza, P.R., Coelho-Castelo, A.A., (2008) BMC Immunol., 9, p. 38de la Torre, L.G., Rosada, R.S., Trombone, A.P., Frantz, F.G., Coelho-Castelo, A.A., Silva, C.L., Santana, M.H., (2009) Colloids Surf., B, 73, p. 175Lange, A., Mills, R.E., Lange, C.J., Stewart, M., Devine, S.E., Corbett, A.H., (2007) J. Biol. Chem., 282, p. 5101Mandavilli, A., (2007) Nat. Med., 13, p. 268Lasic, D.D., (1997) Nature, 387, p. 26Tokunaga, M., Hazemoto, N., Yotsuyanagi, T., (2004) Int. J. Pharm., 269, p. 71Subramanian, A., Ranganathan, P., Diamond, S.L., (1999) Nat. Biotechnol., 17, p. 87

    Consumo alimentar residual e sua relação com medidas de desempenho e eficiência e características in vivo da carcaça de cordeiros

    No full text
    Avaliou-se o consumo alimentar residual (CAR) e a conversão alimentar (CA) de 20 cordeiros, com o objetivo de estimar as correlações entre essas variáveis com medidas de desempenho e com características in vivo da carcaça. Os animais tiveram o consumo de MS (CMS) mensurado por 65 dias e foram pesados a cada 13 dias para obtenção do ganho médio diário (GMD). Foram considerados o peso vivo inicial (PVI), o peso vivo final (PVF), o peso metabólico (PM), o GMD, a taxa de crescimento relativo (TCR), a taxa de Kleiber (TK), a CA, o CMS e o CMS em percentual do PV (CMSPV). As avaliações de carcaça foram realizadas por ultrassom. O CAR se mostrou correlacionado com o CMS (+0,81), o CMSPV (+0,90) e a CA (+0,63). Correlações significativas foram encontradas entre CA e GMD; CA e TCR; CA e TK; e CA e PVI (-0,63, -0,74, -0,75 e +0,51, respectivamente). O CAR e a CA não se mostraram correlacionados com características de carcaça, e, da mesma forma, não houve diferença entre as classes de CAR para essas variáveis. Confirmou-se o potencial do CAR como medida de eficiência alimentar para cordeiros em confinamento, sem existência de relações com o ganho de peso e o tamanho corporal e sem alterações na composição da carcaça
    corecore