79,481 research outputs found
Irreversible processes and the accelerated-decelerated phases of the Universe
A model for the Universe is proposed where it is considered as a mixture of
scalar and matter fields. The particle production is due to an irreversible
transfer of energy from the gravitational field to the matter field and
represented by a non-equilibrium pressure. This model can simulate three
distinct periods of the Universe: (a) an accelerated epoch where the energy
density of the scalar field prevails over the matter field, (b) a past
decelerated period where the energy density of the matter field becomes more
predominant than the scalar energy density, and (c) a present acceleration
phase where the scalar energy density overcomes the energy density of the
matter field.Comment: 6 pages, 2 figures, to be published in Brazilian Journal of Physic
The fully kinetic Biermann battery and associated generation of pressure anisotropy
The dynamical evolution of a fully kinetic, collisionless system with imposed
background density and temperature gradients is investigated analytically. The
temperature gradient leads to the generation of temperature anisotropy, with
the temperature along the gradient becoming larger than that in the direction
perpendicular to it. This causes the system to become unstable to pressure
anisotropy driven instabilities, dominantly to electron Weibel. When both
density and temperature gradients are present and non-parallel to each other,
we obtain a Biermann-like linear in time magnetic field growth. Accompanying
particle in cell numerical simulations are shown to confirm our analytical
results.Comment: 5 pages, 2 figures, + Supplementary materials (4 pages, 2 figures
Damage-based fracture with electro-magnetic coupling
Acoupled elastic and electro-magnetic analysis is proposed including finite displacements and damage-based fracture. Piezo-electric terms are considered and resulting partial differential equations include a non-classical wave equation due to the specific constitutive law. The resulting wave equation is constrained and, in contrast with the traditional solutions of the decoupled classical electromagnetic
wave equations, the constraint is directly included in the analysis. The absence of free current density allows the expression of the magnetic field rate as a function of the electric field and therefore, under specific circumstances, removal of the corresponding magnetic degrees-offreedom. A Lagrange multiplier field is introduced to exactly enforce the divergence constraint, forming a three-field variational formulation (required to include thewave constraint). No vector-potential is required or mentioned, eliminating the need for gauges. The classical boundary conditions of electromagnetism are specialized and a boundary condition involving the electric field is obtained. The spatial discretization makes use of mixed bubble-based (of the MINI type) finite elementswith displacement, electric field and Lagrange multiplier degrees-of-freedom. Three verification examples are presented with very good qualitative conclusions and mesh-independence
Universality class for bootstrap percolation with on the cubic lattice
We study the bootstrap percolation model on a cubic lattice, using
Monte Carlo simulation and finite-size scaling techniques. In bootstrap
percolation, sites on a lattice are considered occupied (present) or vacant
(absent) with probability or , respectively. Occupied sites with less
than occupied first-neighbours are then rendered unoccupied; this culling
process is repeated until a stable configuration is reached. We evaluate the
percolation critical probability, , and both scaling powers, and
, and, contrarily to previous calculations, our results indicate that the
model belongs to the same universality class as usual percolation (i.e.,
). The critical spanning probability, , is also numerically
studied, for systems with linear sizes ranging from L=32 up to L=480: the value
we found, , is the same as for usual percolation with
free boundary conditions.Comment: 11 pages; 4 figures; to appear in Int. J. Mod. Phys.
Meson decay in a corrected model
Extensively applied to both light and heavy meson decay and standing as one
of the most successful strong decay models is the model, in which
pair production is the dominant mechanism. The pair production can
be obtained from the non-relativistic limit of a microscopic interaction
Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude
can be performed by a diagrammatic technique for drawing quark lines. In this
paper we use an alternative approach which consists in a mapping technique, the
Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from
same microscopic interaction. An additional effect is manifest in this
formalism associated to the extended nature of mesons: bound-state corrections.
A corrected is obtained and applied, as an example, to
and decays.Comment: 3 figures. To appear in Physical Review
Leptonic Invariants, Neutrino Mass-Ordering and the Octant of
We point out that leptonic weak-basis invariants are an important tool for
the study of the properties of lepton flavour models. In particular, we show
that appropriately chosen invariants can give a clear indication of whether a
particular lepton flavour model favours normal or inverted hierarchy for
neutrino masses and what is the octant of . These invariants can
be evaluated in any conveniently chosen weak-basis and can also be expressed in
terms of neutrino masses, charged lepton masses, mixing angles and CP violation
phases.Comment: 10 pages, no figure
Non-Factorizable Phases, Yukawa Textures and the Size of sin (2 beta)
We emphasize the crucial r\^ ole played by non-factorizable phases in the
analysis of the Yukawa flavour structure performed in weak bases with Hermitian
mass matrices and with vanishing entries. We show that non-factorizable
phases are important in order to generate a sufficiently large .
A method is suggested to reconstruct the flavour structure of Yukawa couplings
from input experimental data both in this Hermitian basis and in a
non-Hermitian basis with a maximal number of texture zeros. The corresponding
Froggatt--Nielsen patterns are presented in both cases.Comment: 15 pages, 3 figure
- …