27,063 research outputs found

    Black string corrections in variable tension braneworld scenarios

    Full text link
    Braneworld models with variable tension are investigated, and the corrections on the black string horizon along the extra dimension are provided. Such corrections are encrypted in additional terms involving the covariant derivatives of the variable tension on the brane, providing profound consequences concerning the black string horizon variation along the extra dimension, near the brane. The black string horizon behavior is shown to be drastically modified by the terms corrected by the brane variable tension. In particular, a model motivated by the phenomenological interesting case regarding Eotvos branes is investigated. It forthwith provides further physical features regarding variable tension braneworld scenarios, heretofore concealed in all previous analysis in the literature. All precedent analysis considered uniquely the expansion of the metric up to the second order along the extra dimension, what is able to evince solely the brane variable tension absolute value. Notwithstanding, the expansion terms aftermath, further accomplished in this paper from the third order on, elicits the successive covariant derivatives of the brane variable tension, and their respective coupling with the extrinsic curvature, the Weyl tensor, and the Riemann and Ricci tensors, as well as the scalar curvature. Such additional terms are shown to provide sudden modifications in the black string horizon in a variable tension braneworld scenarioComment: 12 pages, 5 figures, accepted in PR

    Notes on the Two-brane Model with Variable Tension

    Full text link
    Motivated by possible extensions of the braneworld models with two branes, we investigate some consequences of a variable brane tension using the well established results on consistency conditions. By a slight modification of the usual stress-tensor used in order to derive the braneworld sum rules, we find out some important constraints obeyed by time dependent brane tensions. In particular it is shown that the tensions of two Randall-Sundrum like branes obeying, at the same time, an Eotvos law, aggravate the fine tuning problem. Also, it is shown that if the hidden brane tension obeys an Eotvos law, then the visible brane has a mixed behavior allowing a bouncing-like period at early times while it is dominated by an Eotvos law nowadays. To finalize, we discuss some qualitative characteristics which may arise in the scope of dynamical brane tensions, as anisotropic background and branons production.Comment: 7 pages, 1 figure, accepted for publication in Physical Review

    Logarithmic behavior of degradation dynamics in metal--oxide semiconductor devices

    Full text link
    In this paper the authors describe a theoretical simple statistical modelling of relaxation process in metal-oxide semiconductor devices that governs its degradation. Basically, starting from an initial state where a given number of traps are occupied, the dynamics of the relaxation process is measured calculating the density of occupied traps and its fluctuations (second moment) as function of time. Our theoretical results show a universal logarithmic law for the density of occupied traps ˉϕ(T,EF)(A+Blnt)\bar{} \sim \phi (T,E_{F}) (A+B \ln t), i.e., the degradation is logarithmic and its amplitude depends on the temperature and Fermi Level of device. Our approach reduces the work to the averages determined by simple binomial sums that are corroborated by our Monte Carlo simulations and by experimental results from literature, which bear in mind enlightening elucidations about the physics of degradation of semiconductor devices of our modern life

    Avaliação Bioeconômica de Antiparasitários Fitoterápicos e Homeopáticos em Bovinos de Corte.

    Get PDF
    bitstream/item/110775/1/COT129-em-alta.pd

    Clifford-Finsler Algebroids and Nonholonomic Einstein-Dirac Structures

    Full text link
    We propose a new framework for constructing geometric and physical models on nonholonomic manifolds provided both with Clifford -- Lie algebroid symmetry and nonlinear connection structure. Explicit parametrizations of generic off-diagonal metrics and linear and nonlinear connections define different types of Finsler, Lagrange and/or Riemann-Cartan spaces. A generalization to spinor fields and Dirac operators on nonholonomic manifolds motivates the theory of Clifford algebroids defined as Clifford bundles, in general, enabled with nonintegrable distributions defining the nonlinear connection. In this work, we elaborate the algebroid spinor differential geometry and formulate the (scalar, Proca, graviton, spinor and gauge) field equations on Lie algebroids. The paper communicates new developments in geometrical formulation of physical theories and this approach is grounded on a number of previous examples when exact solutions with generic off-diagonal metrics and generalized symmetries in modern gravity define nonholonomic spacetime manifolds with uncompactified extra dimensions.Comment: The manuscript was substantially modified following recommendations of JMP referee. The former Chapter 2 and Appendix were elliminated. The Introduction and Conclusion sections were modifie

    Two-branes with variable tension model and the effective Newtonian constant

    Full text link
    It is shown that, in the two brane time variation model framework, if the hidden brane tension varies according to the phenomenological Eotvos law, the visible brane tension behavior is such that its time derivative is negative in the past and positive after a specific time of cosmological evolution. This behavior is interpreted in terms of an useful mechanical system analog and its relation with the variation of the Newtonian (effective) gravitational `constant' is explored.Comment: 15 pages, no figure, accepted for publication in Physical Review

    Nonextensive statistical mechanics applied to protein folding problem: kinetics aspects

    Get PDF
    A reduced (stereo-chemical) model is employed to study kinetic aspects of globular protein folding process, by Monte Carlo simulation. Nonextensive statistical approach is used: transition probability p i j between configurations i &#8594; j is given by p i j =[1 +(1 - q)&#916;Gi j/kB T ]1/(1-q), where q is the nonextensive (Tsallis) parameter. The system model consists of a chain of 27 beads immerse in its solvent; the beads represent the sequence of amino acids along the chain by means of a 10-letter stereo-chemical alphabet; a syntax (rule) to design the amino acid sequence for any given 3D structure is embedded in the model. The study focuses mainly kinetic aspects of the folding problem related with the protein folding time, represented in this work by the concept of first passage time (FPT). Many distinct proteins, whose native structures are represented here by compact self avoiding (CSA) configurations, were employed in our analysis, although our results are presented exclusively for one representative protein, for which a rich statistics was achieved. Our results reveal that there is a specific combinations of value for the nonextensive parameter q and temperature T, which gives the smallest estimated folding characteristic time (t). Additionally, for q = 1.1, (t) stays almost invariable in the range 0.9 < T < 1.3, slightly oscillating about its average value <img border=0 width=32 height=32 src="../../../../../../../img/revistas/bjp/v39n2a/a16txt01.gif" align=absmiddle > or = 27 ±&#963;, where &#963; = 2 is the standard deviation. This behavior is explained by comparing the distribution of the folding times for the Boltzmann statistics (q &#8594; 1), with respect to the nonextensive statistics for q = 1.1, which shows that the effect of the nonextensive parameter q is to cut off the larger folding times present in the original (q &#8594; 1) distribution. The distribution of natural logarithm of the folding times for Boltzmann statistics is a triple peaked Gaussian, while, for q = 1.1 (Tsallis), it is a double peaked Gaussian, suggesting that a log-normal process with two characteristic times replaced the original process with three characteristic times. Finally we comment on the physical meaning of the present results, as well its significance in the near future works
    corecore