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Nonextensive statistical mechanics applied to protein folding problem: kinetics aspects
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A reduced (stereo-chemical) model is employed to study kinetic aspects of globular protein folding process,
by Monte Carlo simulation. Nonextensive statistical approach is used: transition probability pi j between config-
urations i→ j is given by pi j = [1+(1−q)∆Gi j/kBT ]1/(1−q), where q is the nonextensive (Tsallis) parameter.
The system model consists of a chain of 27 beads immerse in its solvent; the beads represent the sequence
of amino acids along the chain by means of a 10-letter stereo-chemical alphabet; a syntax (rule) to design the
amino acid sequence for any given 3D structure is embedded in the model. The study focuses mainly kinetic
aspects of the folding problem related with the protein folding time, represented in this work by the concept of
first passage time (FPT). Many distinct proteins, whose native structures are represented here by compact self
avoiding (CSA) configurations, were employed in our analysis, although our results are presented exclusively
for one representative protein, for which a rich statistics was achieved. Our results reveal that there is a specific
combinations of value for the nonextensive parameter q and temperature T, which gives the smallest estimated
folding characteristic time 〈t〉. Additionally, for q = 1.1, 〈t〉 stays almost invariable in the range 0.9≤ T ≤ 1.3,

slightly oscillating about its average value 〈t〉= 27 ±σ, where σ = 2 is the standard deviation. This behavior is
explained by comparing the distribution of the folding times for the Boltzmann statistics (q→ 1), with respect
to the nonextensive statistics for q = 1.1, which shows that the effect of the nonextensive parameter q is to cut
off the larger folding times present in the original (q→ 1) distribution. The distribution of natural logarithm of
the folding times for Boltzmann statistics is a triple peaked Gaussian, while, for q = 1.1 (Tsallis), it is a double
peaked Gaussian, suggesting that a log-normal process with two characteristic times replaced the original pro-
cess with three characteristic times. Finally we comment on the physical meaning of the present results, as well
its significance in the near future works.
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1. INTRODUCTION

Globular proteins are peptide chains identified by their
amino acid sequence. Under physiological condition, each
protein naturally folds over itself in a compact and precise 3D
structure (its native structure) [1]; remarkably, such proteins
are soluble in polar solvents [2, 3]. The number of differ-
ent proteins found in the nature is very large [4]; only in the
human body about 105 different types of proteins are found;
actually, they correspond to half of the dry weight of the hu-
man body. On the other hand, the set of structural patterns,
named as protein folds 1, from which all known protein struc-
tures can be ensembled, is much smaller; there are little more
the one thousand registered folds. A globular protein works
properly only when it is meet in its native structure, which
is reached through a process named protein folding [1]; the
folding problem is a fundamental process in molecular biol-
ogy without yet a complete explanation [6–9].

Here the protein system, comprehended by the chain and
its solvent, is characterized by its heterogeneity (chain plus
solvent) and complex energetic interactions (intra-chain and
solvent-chain interactions) under the effects of its nanoscopic
size. Therefore, the use of simplified (or reduced) models is
imperative in order to handle the folding process in a gen-
eral form, through fundamental physics [10]. An important
characteristic of such minimalist approach is that a signifi-
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1 Folds are resultant forms - for example, α-helix, β-sheets, turns and oth-

ers - of complex interaction among the elements presents in the folding
process [5].

cant amount of data can be generated, so that statistical anal-
ysis becomes viable, for instance, on kinetic processes, fa-
cilitating the use of experimental results. Therefore, a mini-
malist model, namely the stereo-chemical model, is employed
to study kinetic aspects of the protein folding problem [11–
13]. Due the number of distinct aspects of the protein folding
problem the stereo-chemical model can be applied, and it can
be considered as a reduced parallel world regarding the glob-
ular protein system.

The model is treated by Monte Carlo (MC) simulation with
the nonextensive statistical approach; the transition proba-
bility pi j between configurations i → j is given by pi j =
[1 +(1− q)∆Gi j]1/(1−q) [14, 15]. Our main objective in this
work is to analyze the behavior of the folding characteristic
time as a function of the temperature T and the parameter q;
the folding time for each protein and for each run, is taken as
the first passage time. A representative native structure was
utilized to illustrate our results, but many distinct structures
were also considered. Our work is organized as follows: a
brief description of the stereo-chemical model and the moti-
vations to use the q-exponential function are given in the next
section; in the third section the results are presented and, fi-
nally, the last topic is dedicated to comments and perspectives
for future works.

2. THE STEREO-CHEMICAL MODEL

The physical system of interest is a protein molecule in
solution, which is represented here as one single chain with
27 beads immersed in its solvent (water). The beads, rep-
resenting the residues (amino acids) along the chain, occupy
consecutive and exclusive sites of a three-dimensional infin-
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FIG. 1: Steric specificities and hydrophobic level (A). Connected
letters indicate that these residue types are allowed to contact as lat-
tice first neighbors. On B, two maximally compacted (CSA) config-
urations representing distinct native structures.

ity cubic lattice, while the remainder sites, named as solvent
sites, are filled out by effective solvent molecules, which in-
teract explicitly with the chain. Interactions that count for
the present model are intended to represent the inter-residue
sterical specificities and the hydrophobic effect. Therefore,
additionally to the trivial excluded volume restriction for sol-
vent and chain elements, the intra-chain interactions present
specific pairwise steric constraints, and the chain interacts
with the solvent according to the hydrophobic level of their
residues, as summarized in Fig.1A [11, 12].

As native structures, we consider configurations from a
catalogue with 51.704 distinct compact self avoiding (CSA)
structures, which form cubes 3x3x3 for a chain with 27
residues. For each protein in the catalogue there is a cor-
responding specific sequence of residues, taken from a reper-
tory of ten distinct types, that is: different hydrophobic levels
and steric specificities define a 10-letter alphabet, see Fig.1A
[12]. A syntax, or rule to design the protein, given each par-
ticular CSA structure (native), is also provided for the stereo-
chemical model [13].

The system is described in the context of microcanonical
ensemble. Its configurations (chain and solvent) all have the
same weight p = 1/Γo, but note that for the same chain con-
figuration there is a huge number of distinct configurations
for the solvent. So, if the chain is considered frozen in a par-
ticular configuration, say configuration a, the system entropy
is reduced by an amount δSa; therefore a weight pa = eδSa/k

is associated with that configuration a, (k: Boltzmann con-
stant). Next, the transition probability W (a → b) of con-
figuration a to configuration b is given by detailed balance:
W (a→ b) = e−∆Sba/k, where ∆Sba = δSb− δSa. Finally, as
there are no variations on the system internal energy, we write
W (a→ b) = e∆Gba/kT [16].

Formally, the interactions between parts of the system are:
(i)− intra-chain interactions: excluded volume and specific
restrictions between first neighbors, Fig.1A; (ii)− solvent-
solvent interactions: excluded volume; (iii)− chain-solvent:
excluded volume and hydrophobic effect. The latter, in spite
of being due to the direct interaction between each residue

and the solvent, in practice, for lattice models in which the
solvent density does not fluctuate, the chain-solvent interac-
tions can be exactly represented by the addictive hydrophobic
potential, gm,n = (hm + hn), between first neighbors, Fig.1A.
The hydrophobic level hm represents the free energy change
to transfer the residue type-m from a polar environment (sol-
vent) into an apolar medium (protein interior). Thus, for a
given chain configuration a, the free energy of the system can
be considered as G = Go +∑gm,n(a), where Go is a constant.
Details about target configurations and 10-letter alphabet are
found in [11–13].

The finite nature of the system (nanometric structures) and
the complex interactions between its parts (which can gen-
erate a rough free energy landscape), suggest that thermal
fluctuations are preponderant factors of the system’s behavior.
Therefore, the Boltzmann weight e−∆Gba/kT [17] is exchanged
by the q-exponential, namely [1+(1−q)∆Gba/kT ]1/1−q [14]
(which embeds the Boltzmann factor for q→ 1), in order to
examine the effect of the nonextensive parameter q on the ki-
netic characteristics of the folding process. Specifically, we
perform many independent Monte Carlo experiments, which
generate large sets of folding times for different temperatures
T , and for different values of nonextensive parameter q. More
general motivations for using Tsallis statistics include the fact
that: (i)− the protein folding process is a stochastic process
out of thermodynamical equilibrium [18, 19] and (ii)− there
is evidence that, to thermostatistically approach living sys-
tems, the nonextensive statistical mechanics can be a conve-
nient choice [15].

3. RESULTS

In order to get the precise meaning of the results presented
here, we first describe, with some detail, the computational
experiments carried out in this work. First, in the real ex-
perimental approach, one considers a collection of N open
denatured protein molecules of the same type, in diluted so-
lution; the proteins are by identified by labels 1,2, ..., i, ...,N.
So, once folding conditions have been established, protein 1
finds the native structure in the time t1, protein 2 at t2, and so
on; that is, ti is the folding time of the protein i. Then, after
some time 〈t〉, half of the proteins, that is N/2 proteins, reach
the native state, and the amount 〈t〉 is identified as the folding
characteristic time of that type of protein 2. Accordingly, in
our MC simulations for each particular protein, the concept of
first passage time (FPT) is adopted as the folding time, that is:
the time spent, in units of MC steps for a particular MC simu-
lation, to find the native structure by the first time. Therefore,
N independent simulations of a given protein produce a set
{ti} of N folding times, with which one determines the fold-
ing characteristic time 〈t〉 for that protein, such as in an real
experiment. If the folding process is multi-exponential time
dependent, 〈t〉 is found by solving numerically the transcen-
dental equation N/2 = ∑i mie−〈t〉/ti , for given {ti} and {mi},
constrained with ∑i mi = N. At last, the folding rate for that

2 Note that, one could exchange the factor 1/2 by 1/e.
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FIG. 2: Folding characteristic time 〈t〉 for two distinct native struc-
ture (A: CSA 866; B: CSA 41943). There are strong correlation
between folding times (up side) and structural patterns of the na-
tive structure, as shown in the center and down side of figure; CSA
structures and Contact Maps, respectively.

protein is then defined as τ = 1/〈t〉.
The structure identified by the label 866 was chosen to rep-

resent our results regarding the behavior of folding charac-
teristic time 〈t〉 for two reasons. First, similarly to real pro-
teins, it is rich in secondary structure-like (indeed it presents
the largest possible content of secondary structure among
all CSA configurations of catalogue), as shown in Fig.2A,
through its contact map. Second, as a consequence of its
structure peculiarity, it presents the smallest 〈t〉 which im-
plies in an optimized CPU time. The results are summarized
in Fig.3, which show the characteristic time 〈t〉 as a function
of temperature T (arbitrary units) in the model-significative
interval 0.9 ≤ T ≤ 1.5 and of the nonextensive parameter q,
also in the interval 0.9 ≤ q ≤ 1.5. For each pair (T,q), six
hundred distinct MC simulations were performed. The small-
est 〈t〉 are obtained for specific combinations of T and q, pro-
ducing a valley in which the folding characteristic time is al-
ways smaller than 50 (MC units of time) Fig.3A. However,
as shown in Fig.3B, only for q = 1.1, one gets 〈t〉 < 50 for
practically every temperature in the interval 0.9≤ T ≤ 1.4.

The behavior of 〈t〉 when q changes with T fixed, seems to
be similar to that in which q is fixed at q→ 1 (Boltzmann) and
T changes. However only for q = 1.1 the folding character-
istic time stays almost invariable in the range 0.9≤ T ≤ 1.3;
see Fig.3; indeed 〈t〉 slightly oscillates about its average value
〈t〉 = 27 ±σ, where σ = 2 is the standard deviation; see TA-
BLE I.

That behavior is explained by Fig.4: when the distribution

FIG. 3: A linear relation between T and q roughly describes a valley
in which 〈t〉 is always smaller than 50; part A. For q = 1.1, 〈t〉
obtains its smaller values, which are smaller than 50 for practically
the entire range of T , as shown in part B; see also TABLE I. The
two lines in part B emphasize the results for Boltzmann (q→ 1) and
Tsallis (q = 1.1) statistics. Note also that the distance between the
lines that confine the values 〈t〉< 50, part A, reduces systematically
as T increases and q decreases.
4 ??????????????? et al.

TABLE I: Folding characteristic time as a function of temperature
T and nonextensive parameter q. Error (standard deviation of the
averages) are estimated as being about 6%.

FIG. 4: Distribution of the natural logarithm of the folding time
(structure 866) for T = 1.0 and q→ 1 (Boltzmann statistics, A fig-
ure) and q = 1.1 (Tsallis statistics, B figure). Tsallis weight seems
to allow stronger fluctuations, efficiently removing the system from
eventual stereo-energetic traps.

normal process but, now with two characteristic times. That
is, using the Tsallis statistics the third peak that appears in the
Boltzmann distribution is cut off. However the two other pro-
cesses are essentially preserved by, with their respective char-
acteristic frequencies accordingly increased. Differences on
the mean values of the folding time (represented by x = ln(t)
in the insets of Fig.4A and 4B) and on the width of the dis-
tributions, with respect to the two statistics, possibly are due
to the fact that the numbers of simulations is insufficient to
determine those results accurately; for both cases (q→ 1, and
q = 1.1), about 104 independent MC experiments were carried
out.

4. COMMENTS AND PERSPECTIVES

The folding transition for globular two-state proteins oc-
curs in a relatively small temperature range ∆T = Tmax−Tmin;
out of this domain the folding characteristic time increases
quickly. Experimentally, this fact is observed by a rapid
change of the equilibrium constant Keq = [N]/[U ], where [N]
and [U ] are the folded (native) and unfolded protein concen-
tration, respectively, when the system temperature gets out
the range ∆T . However, in the interval ∆T the folding re-
action is robust, with Keq practically constant [20] as it is re-
produced when the nonextensive statistics is used, specifically
for q = 1.1. Indeed, the folding time distribution is broad be-
cause the free energy landscape is rough, trapping the chain in
local free energy minima or some steric entanglement. Tsal-
lis weight seems to be efficient to quickly remove the sys-
tem from such traps, and so folding routes with longer folding
times are cut off from the distribution; Fig.4B. A computa-
tional consequence of this results is that simulations become
much more faster, opening the possibility to trace a strategy
to extend the study of the effect of Tsallis statistics to others
kinetic matters of the folding problem, such as on the correla-
tion between the folding rates and global structural parameters
of native structures (contact order, for instance) [21], and on
the stability of the native state.
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FIG. 4: Distribution of the natural logarithm of the folding time
(structure 866) for T = 1.0 and q→ 1 (Boltzmann statistics, fig-
ure A) and q = 1.1 (Tsallis statistics, figure B). Tsallis weight seems
to allow stronger fluctuations, efficiently removing the system from
eventual stereo-energetic traps.

of natural logarithm of the folding times for the Boltzmann
statistics (q→ 1, Fig.4A) is compared with the nonextensive
statistics for q = 1.1. (Fig.4B), one can see that the effect
on varying q is to cut off the larger folding times from the
distribution. Indeed, the original distribution (Fig.4A, Boltz-
mann) can be seen as a triple peaked Gaussian, suggesting
a log-normal process with three characteristic times. In the
same way, for q = 1.1 (Fig.4B, Tsallis), it also suggests a log-
normal process, but now with two characteristic times. That
is, using the Tsallis statistics, the third peak that appears in

the Boltzmann distribution is cut off. However, the two other
processes are essentially preserved with their respective char-
acteristic frequencies accordingly increased. Differences on
the mean values of the folding time -actually ln(t) as shown
in Fig.4, and on the width of the distributions, with respect to
the two statistics, possibly are due to the fact that the num-
ber of simulations is insufficient to determine those results
accurately; for both cases (q→ 1, and q = 1.1), about 104

independent MC experiments were carried out.

4. COMMENTS AND PERSPECTIVES

The folding transition for globular two-state proteins oc-
curs in a relatively small temperature range ∆T ; out of this
domain the folding characteristic time increases significantly.
Experimentally, this fact is observed by a rapid change of the
equilibrium constant Keq = [N]/[U ], where [N] and [U ] are the
folded (native) and unfolded protein concentration, respec-
tively, when the system temperature is out of the range ∆T .
However, in the interval ∆T , the folding reaction is robust,
with Keq practically constant [20] as it is reproduced when
the nonextensive statistics is used, specifically for q = 1.1.
Indeed, the folding time distribution is broad because the free
energy landscape is rough, trapping the chain in local free
energy minima or some steric entanglement. Tsallis weight
seems to be efficient to quickly remove the system from such
traps, and so folding routes with longer folding times are
cut off from the distribution; Fig.4. A computational conse-
quence of this results is that simulations become much more
faster, opening the possibility to trace a strategy to extend the
study of the effect of Tsallis statistics to others kinetic matters
of the folding problem, such as on the correlation between the
folding rates and global structural parameters of native struc-
tures (contact order, for instance) [21], and on the stability of
the native state.
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