78,986 research outputs found

    Activation thresholds in epidemic spreading with motile infectious agents on scale-free networks

    Get PDF
    We investigate a fermionic susceptible-infected-susceptible model with mobility of infected individuals on uncorrelated scale-free networks with power-law degree distributions P(k)∼k−γP (k) \sim k^{-\gamma} of exponents 2<γ<32<\gamma<3. Two diffusive processes with diffusion rate DD of an infected vertex are considered. In the \textit{standard diffusion}, one of the nearest-neighbors is chosen with equal chance while in the \textit{biased diffusion} this choice happens with probability proportional to the neighbor's degree. A non-monotonic dependence of the epidemic threshold on DD with an optimum diffusion rate D∗D_\ast, for which the epidemic spreading is more efficient, is found for standard diffusion while monotonic decays are observed in the biased case. The epidemic thresholds go to zero as the network size is increased and the form that this happens depends on the diffusion rule and degree exponent. We analytically investigated the dynamics using quenched and heterogeneous mean-field theories. The former presents, in general, a better performance for standard and the latter for biased diffusion models, indicating different activation mechanisms of the epidemic phases that are rationalized in terms of hubs or max kk-core subgraphs.Comment: 9 pages, 4 figure

    Poincar\'e's polyhedron theorem for cocompact groups in dimension 4

    Full text link
    We prove a version of Poincar\'e's polyhedron theorem whose requirements are as local as possible. New techniques such as the use of discrete groupoids of isometries are introduced. The theorem may have a wide range of applications and can be generalized to the case of higher dimension and other geometric structures. It is planned as a first step in a program of constructing compact C\mathbb C-surfaces of general type satisfying c12=3c2c_1^2=3c_2.Comment: 15 pages, 1 figure, 9 references. Introduction revised. Example 3.16 adde

    On a nonlinear theory of elastic shells

    Get PDF
    Nonlinear theory of elastic shells with deformation gradient

    Vacuum fluctuations of a scalar field near a reflecting boundary and their effects on the motion of a test particle

    Full text link
    The contribution from quantum vacuum fluctuations of a real massless scalar field to the motion of a test particle that interacts with the field in the presence of a perfectly reflecting flat boundary is here investigated. There is no quantum induced dispersions on the motion of the particle when it is alone in the empty space. However, when a reflecting wall is introduced, dispersions occur with magnitude dependent on how fast the system evolves between the two scenarios. A possible way of implementing this process would be by means of an idealized sudden switching, for which the transition occurs instantaneously. Although the sudden process is a simple and mathematically convenient idealization it brings some divergences to the results, particularly at a time corresponding to a round trip of a light signal between the particle and the wall. It is shown that the use of smooth switching functions, besides regularizing such divergences, enables us to better understand the behavior of the quantum dispersions induced on the motion of the particle. Furthermore, the action of modifying the vacuum state of the system leads to a change in the particle energy that depends on how fast the transition between these states is implemented. Possible implications of these results to the similar case of an electric charge near a perfectly conducting wall are discussed.Comment: 17 pages, 8 figure

    Homogeneous abundance analysis of dwarf, subgiant and giant FGK stars with and without giant planets

    Full text link
    We have analyzed high-resolution and high signal-to-noise ratio optical spectra of nearby FGK stars with and without detected giant planets in order to homogeneously measure their photospheric parameters, mass, age, and the abundances of volatile (C, N, and O) and refractory (Na, Mg, Si, Ca, Ti, V, Mn, Fe, Ni, Cu, and Ba) elements. Our sample contains 309 stars from the solar neighborhood (up to the distance of 100 pc), out of which 140 are dwarfs, 29 are subgiants, and 140 are giants. The photospheric parameters are derived from the equivalent widths of Fe I and Fe II lines. Masses and ages come from the interpolation in evolutionary tracks and isochrones on the HR diagram. The abundance determination is based on the equivalent widths of selected atomic lines of the refractory elements and on the spectral synthesis of C_2, CN, C I, O I, and Na I features. We apply a set of statistical methods to analyze the abundances derived for the three subsamples. Our results show that: i) giant stars systematically exhibit underabundance in [C/Fe] and overabundance in [N/Fe] and [Na/Fe] in comparison with dwarfs, a result that is normally attributed to evolution-induced mixing processes in the envelope of evolved stars; ii) for solar analogs only, the abundance trends with the condensation temperature of the elements are correlated with age and anticorrelated with the surface gravity, which is in agreement with recent studies; iii) as in the case of [Fe/H], dwarf stars with giant planets are systematically enriched in [X/H] for all the analyzed elements, except for O and Ba (the former due to limitations of statistics), confirming previous findings in the literature that not only iron has an important relation with the planetary formation; and iv) giant planet hosts are also significantly overabundant for the same metallicity when the elements from Mg to Cu are combined together.Comment: 20 pages, 16 figures, 8 table
    • …
    corecore