6 research outputs found

    Optimization Of The Nitrate Reductase Activity Assay For Citrus Trees

    No full text
    The aim of this study was to assess factors that can affect the in vivo and in vitro assays of the nitrate reductase activity (NRA) in sweet orange trees and then standardize conditions for tissue sampling and analysis. Seven-month-old plants grown in pots were used, of which, mature and healthy leaves between the third and the fifth position from the branch apex, stems, and roots were assessed. One half of each leaf was used for in vivo tests, and the other half was used for in vitro tests. In addition to varied incubation time and temperature, in vivo KNO3and n-propanol concentrations and in vitro KNO3and NADH concentrations were evaluated. The optimum conditions for the in vivo NRA assay in leaves were: 200 mmol L−1KNO3and 1 % n-propanol at 40 °C for 20 min. The highest leaf NRA occurred at 11:00 h for the in vivo assay and at 13:00 h for the in vitro assay, with both analysis showing similar results. Overestimation of the in vitro NRA occurred as compared to the in vivo analysis when accessed early morning and late afternoon. Branches bearing fruits show reduced NRA in young mature leaves, whereas sprouting significantly increases NRA in correspondent leaves. For the root assays, the optimized conditions for the NRA estimation were the same as for leaves. Although roots and stems (bark) have shown some NRA, it was six times lower than leaf NRA. Our data indicate that NO3 −reduction occurs mostly in leaves and there is a significant effect of daytime and leaf position in relation to fruit or sprouts on NRA of citrus trees.374383390Andrews, M., The partitioning of nitrate assimilation between root and shoot of higher plants (1986) Plant Cell Environ, 9, pp. 511-519. , COI: 1:CAS:528:DyaL28Xmt1aksr8%3DAslam, M., Travis, R.L., Rains, D.W., Diurnal fluctuations of nitrate uptake and in vivo nitrate reductase activity in Pima and Acala cotton (2001) Crop Sci, 41, pp. 372-378. , COI: 1:CAS:528:DC%2BD3MXlsVOku70%3DBar-Akiva, A., Sagiv, J., Nitrate reductase in the citrus plant: properties, assay conditions and distribution within the plant (1967) Physiol Plant, 20, pp. 500-506. , COI: 1:CAS:528:DyaF2sXksFWjt7o%3DBar-Akiva, A., Sternbaum, J., Possible use of nitrate reductase activity of leaves as a measure on the nitrogen requirement of citrus trees (1965) Plant Cell Physiol, 6, pp. 575-577. , COI: 1:CAS:528:DyaF28XjtVKisA%3D%3DBarreto, D.C.S., Gonçalves, J.F.C., Santos Júnior, U.M., Fernandes, A.V., Bariani, A., Sampaio, P.T.B., Biomass accumulation, photochemical efficiency of photosystem II, nutrient contents and nitrate reductase activity in young rosewood plants (Aniba rosaeodora Ducke) submitted to different NO3 −:NH4 +ratios (2007) Acta Amazônica, 37, pp. 533-542. , COI: 1:CAS:528:DC%2BD1cXhtFSgtrfNCarelli, M.L.C., Fahl, J.I., Magalhães, A.C., Atividade da reductase de nitrato em folhas e raízes de plantas de café (Coffea arabica L.) (1990) Revista Brasileira de Botânica, 13, pp. 119-123. , COI: 1:CAS:528:DyaK3MXhs1SktLg%3DChen, B., Wang, Z., Li, S., Wang, G., Song, H., Wang, X., Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables (2004) Plant Sci, 167, pp. 635-643. , COI: 1:CAS:528:DC%2BD2cXlsFOqtb0%3DChopra, R.K., Effects of temperature on the in vivo assay of nitrate reductase in some C3and C4species (1983) Ann Bot, 51, pp. 617-620. , COI: 1:CAS:528:DyaL3sXktlKitr4%3DCorreia, M.J., Fonseca, F., Azevedo-Silva, J., Dias, C., David, M.M., Barrote, I., Osório, M.L., Osório, J., Effects of water deficit on the activity of nitrate reductase and content of sugars, nitrate and free amino acids in the leaves and roots of sunflower and white lupin plants growing under two nutrient supply regimes (2005) Physiol Plant, 124, pp. 61-70. , COI: 1:CAS:528:DC%2BD2MXkvV2hsrg%3DCrawford, N.M., Glass, A.D.M., Molecular and physiological aspects of nitrate uptake in plants (1998) Trends Plant Sci, 3, pp. 389-395DaMatta, F.M., Amaral, J.A.T., Rena, A.B., Growth periodicity in trees of Coffea arabica L. in relation to nitrogen supply and nitrate reductase activity (1999) Field Crops Res, 60, pp. 223-229Dias, D.N., Martins-Loução, M.A., Sheppard, L., Cruz, C., Patterns of nitrate reductase activity vary according to the plant functional group in a Mediterranean maquis (2011) Plant Soil, 347, pp. 363-376. , COI: 1:CAS:528:DC%2BC3MXhtFyjsbjEKaiser, W.M., Brendle-Behnisch, E., Rapid modulation of spinach leaf nitrate reductase activity by photosynthesis (1991) Plant Physiol, 96, pp. 363-367. , COI: 1:CAS:528:DyaK3MXks1yksrY%3D, PID: 16668194Kaiser, W.M., Huber, S.C., Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers (2001) J Exp Bot, 52, pp. 1981-1989. , COI: 1:CAS:528:DC%2BD3MXns1Wkt74%3D, PID: 11559733Kaiser, W.M., Weiner, H., Huber, S.C., Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity (1999) Physiol Plant, 105, pp. 385-390. , COI: 1:CAS:528:DyaK1MXis1Ggurw%3DKaiser, W.M., Kandlbinder, A., Stoimenova, M., Glaab, J., Discrepancy between nitrate reductase activity in leaf extracts: what limits nitrate reduction in situ? (2000) Planta, 210, pp. 801-807. , COI: 1:CAS:528:DC%2BD3cXit1Gjtb8%3D, PID: 10805452Kato, T., Kubota, S., Reduction and assimilation of 15N-nitrate by citrus trees in cold season in comparison with summer (1982) J Jpn Soc Hortic Sci, 50, pp. 413-420. , COI: 1:CAS:528:DyaL38XlvFGrtbs%3DLea, U.S., Leydecker, M.T., Quilleré, I., Meyer, C., Lillo, C., Posttranslational regulation of nitrate reductase strongly affects the levels of free amino acids and nitrate, whereas transcriptional regulation has only minor influence (2006) Plant Physiol, 140, pp. 1085-1094. , COI: 1:CAS:528:DC%2BD28Xislygs7o%3D, PID: 16461378Lee, H.J., Titus, J.S., Factors affecting the in vivo nitrate reductase assay from MM106 apple trees (1992) Commun Soil Sci Plant Anal, 23, pp. 981-991. , COI: 1:CAS:528:DyaK38XmtVOmtbo%3DLillo, C., Studies of diurnal variations of nitrate reductase activity in barley leaves using various assay methods (1983) Physiol Plant, 57, pp. 357-362. , COI: 1:CAS:528:DyaL3sXhsFOqsro%3DLillo, C., Circadian rhythmicity of nitrate reductase activity in barley leaves (1984) Physiol Plant, 61, pp. 219-223. , COI: 1:CAS:528:DyaL2cXks12gu7c%3DLillo, C., Diurnal variations of nitrite reductase, glutamine synthetase, glutamate synthase, lanine aminitransferase and aspartate aminotransferase in barley leaves (1984) Physiol Plant, 61, pp. 214-218. , COI: 1:CAS:528:DyaL2cXks12gu7Y%3DLillo, C., Henriksen, A., Comparative studies of diurnal variations of nitrate reductase activity in wheat, oat and barley (1984) Physiol Plant, 62, pp. 89-94. , COI: 1:CAS:528:DyaL2cXls1Omsb8%3DLillo, C., Meyer, C., Lea, U.S., Provan, F., Oltedal, S., Mechanism and importance of post-translational regulation of nitrate reductase (2004) J Exp Bot, 55, pp. 1275-1282. , COI: 1:CAS:528:DC%2BD2cXkvVSrsb8%3D, PID: 15107452Machado, A.T., Magalhães, J.R., Magnavaca, R., Silva, M.R., Determinação da atividade de enzimas envolvidas no metabolismo do N em diferentes genótipos de milho (1992) Rev Bras Fisiol Veg, 4, pp. 45-47. , COI: 1:CAS:528:DyaK3sXpvVWhsg%3D%3DMiller, A.J., Fan, X., Shen, Q., Smith, S.J., Amino acids and nitrate as signals for the regulation of nitrogen acquisition (2007) J Exp Bot, 59, pp. 111-119. , PID: 18093964Nicodemus, M.A., Francis Salifu, K., Jacobs, D.F., Nitrate reductase activity and nitrogen compounds in xylem exudate of Juglans nigra seedlings: relation to nitrogen source and supply (2008) Trees, 22, pp. 685-695. , COI: 1:CAS:528:DC%2BD1cXhtFamsrfENievola, C.C., Mercier, H., Variações diurnas da atividade in vivo da redutase do nitrato em abacaxizeiro (Ananas comosus (L.) Merr.-Bromeliaceae) (2001) Rev Bras Bot, 24, pp. 295-301. , COI: 1:CAS:528:DC%2BD3MXovVyjsbk%3DOliveira, M.A.J., Machado, E.C., Bovi, M.L.A., Rodrigues, J.D., Atividade da redutase de nitrato em mudas de pupunheira (Bactris gasipaes) (2005) Ciênc Rural, 35, pp. 515-522Queiroz, C.G.S., Alves, J.D., Rena, A.B., Cordeiro, A.T., Efeito do cloranfenicol, propanol, pH e temperatura sobre a atividade in vivo da redutase do nitrato em cafeeiros jovens (1991) Rev Bras Bot, 14, pp. 73-77Reis, A.R., Favarin, J.L., Gallo, L.A., Malavolta, E., Moraes, M.F., Lavres, J.J., Nitrate reductase and glutamine synthetase activity in coffee leaves during fruit development (2009) Rev Bras Cienc Solo, 33, pp. 315-324. , COI: 1:CAS:528:DC%2BD1MXmslemtLY%3DRibeiro, R.V., Machado, E.C., Santos, M.G., Oliveira, R.F., Photosynthesis and water relations of well-watered orange plants as affected by winter and summer conditions (2009) Photosynthetica, 47, pp. 215-222Sánchez, E., Ávila-Quezada, G., Gardea, A.A., Muñoz, E., Ruiz, J.M., Romero, L., Nitrogen metabolism in roots and leaves of green bean plants exposed to different phosphorus doses (2009) Phyton, 78, pp. 11-16Solomonson, L.P., Barber, M.J., Assimilatory nitrate reductase: functional properties and regulation (1990) Ann Rev Plant Physiol Mol Biol, 41, pp. 225-253. , COI: 1:CAS:528:DyaK3cXksFCktrs%3DSrivastava, H.S., Regulation of nitrate reductase activity in higher plants (1980) Phytochemistry, 19, pp. 725-733. , COI: 1:CAS:528:DyaL3cXmtVSqs7g%3DStreeter, J.G., Bosler, M.E., Comparison of in vitro and in vivo assays for nitrate reductase in soybean leaves (1972) Plant Physiol, 49, pp. 448-450. , COI: 1:CAS:528:DyaE38Xht1ehs7o%3D, PID: 16657979Tucker, D.E., Allen, D.J., Ort, D.R., Control of nitrate reductase by circadian and diurnal rhythms in tomato (2004) Planta, 219, pp. 277-285. , COI: 1:CAS:528:DC%2BD2cXksVShu7o%3D, PID: 14963706Wickert, E., Marcondes, J., Lemos, M.V., Lemos, E.G.M., Nitrogen assimilation in Citrus based on CitEST data mining (2007) Genet Mol Biol, 30, pp. 810-818. , COI: 1:CAS:528:DC%2BD1cXjt1WlsLg%3DYang, Z., Midmore, D.J., A model for the circadian oscillations in expression and activity of nitrate reductase in higher plants (2005) Ann Bot, 96, pp. 1019-1026. , COI: 1:CAS:528:DC%2BD2MXhtlSjsL3L, PID: 1612677

    Caracterização química e mineralogia de solos antrópicos (terras pretas de índio) na amazônia central

    No full text
    Na Amazônia brasileira é comum a ocorrência de sítios arqueológicos. Frequentemente, observa-se que as ações humanas nesses sítios promoveram modificações significativas em muitas das características físicas, morfológicas e químicas dos solos desses ambientes, tornando-os muito diferentes dos solos adjacentes, especialmente nas áreas de terra firme da região. Embora muitos estudos tenham sido conduzidos visando compreender a magnitude dessas modificações e seus reflexos na gênese dos solos influenciados, muitas questões precisam ser mais bem compreendidas, sobretudo as relacionadas com a mineralogia desses solos. Este estudo teve como objetivo avaliar as características químicas, a composição mineralógica das frações argila e areia e o grau de pedogênese de cinco perfis de solos com horizonte A antrópico (Au), em ambientes de terra firme e várzea, localizados na Bacia Sedimentar do Amazonas, entre Coari e Manaus-AM. Amostras de solos foram coletadas, preparadas e submetidas às análises químicas de rotina e caracterizadas quanto aos teores de carbono oxidável e aos teores de Si, Fe, Al e P; adicionalmente, efetuou-se a identificação dos minerais presentes nas frações argila e areia, por meio de difratometria de raios X. Os resultados mostraram que as modificações promovidas pela atividade humana levaram à melhoria da fertilidade do solo, resultando em solos com acidez moderada, elevados teores de Ca2+ e de P disponíveis e baixos teores de Al3+ trocável. Esses resultados também revelaram teores muito elevados de P-total nos horizontes antrópicos, variando entre 1.630 e 8.840 mg kg-1 de P2O5. A mineralogia da fração argila dos solos antrópicos de terra firme revelou dominância de caulinita, além da ocorrência de gibbsita, de goethita e de óxidos de titânio (anatásio). O perfil de várzea, além de caulinita e goethita, apresentou também minerais do tipo 2:1 na fração argila. A mineralogia da fração areia dos solos estudados revelou dominância de quartzo, independentemente do ambiente. A fração magnética é composta por maghemita e hematita. Constatou-se, portanto, significativa riqueza química nos horizontes antrópicos, bem como diferenças na composição mineralógica desses horizontes
    corecore