103,884 research outputs found

    A coordinate-dependent superspace deformation from string theory

    Get PDF
    Starting from a type II superstring model defined on R2,2×CY6R^{2,2}\times CY_6 in a linear graviphoton background, we derive a coordinate dependent CC-deformed N=1{\cal N}=1, d=2+2d=2+2 superspace. The chiral fermionic coordinates θ\theta satisfy a Clifford algebra, while the other coordinate algebra remains unchanged. We find a linear relation between the graviphoton field strength and the deformation parameter. The null coordinate dependence of the graviphoton background allows to extend the results to all orders in α′\alpha'.Comment: 14 pages, reference added, accepted for publication in JHE

    Exact partition function in U(2)×U(2)U(2)\times U(2) ABJM theory deformed by mass and Fayet-Iliopoulos terms

    Get PDF
    We exactly compute the partition function for U(2)k×U(2)−kU(2)_k\times U(2)_{-k} ABJM theory on S3\mathbb S^3 deformed by mass mm and Fayet-Iliopoulos parameter ζ\zeta . For k=1,2k=1,2, the partition function has an infinite number of Lee-Yang zeros. For general kk, in the decompactification limit the theory exhibits a quantum (first-order) phase transition at m=2ζm=2\zeta .Comment: 11 pages, 1 figure. v2: references adde

    Ricci dark energy in Chern-Simons modified gravity

    Full text link
    In this work, we have considered the Ricci dark energy model, where the energy density of the universe is proportional to the Ricci scalar curvature, in the dynamic Chern-Simons modified gravity. We show that in this context the evolution of the scale factor is similar to that displayed by the modified Chaplygin gas.Comment: 7 pages; to appear in EPJ

    Wang-Landau sampling in three-dimensional polymers

    Full text link
    Monte Carlo simulations using Wang-Landau sampling are performed to study three-dimensional chains of homopolymers on a lattice. We confirm the accuracy of the method by calculating the thermodynamic properties of this system. Our results are in good agreement with those obtained using Metropolis importance sampling. This algorithm enables one to accurately simulate the usually hardly accessible low-temperature regions since it determines the density of states in a single simulation.Comment: 5 pages, 9 figures arch-ive/Brazilian Journal of Physic

    Modelling Intermediate Age and Old Stellar Populations in the Infrared

    Get PDF
    We have investigated the spectro-photometric properties of the Asymptotic Giant Branch (AGB) stars and their contribution to the integrated infrared emission in simple stellar populations (SSP). Adopting analytical relations describing the evolution of these stars in the HR diagram and empirical relations for the mass-loss rate and the wind terminal velocity, we were able to model the effects of the dusty envelope around these stars, with a minimal number of parameters. We computed isochrones at different age and initial metal content. We compare our models with existing infrared colors of M giants and Mira stars and with IRAS PSC data. Contrary to previous models, in the new isochrones the mass-loss rate, which establishes the duration of the AGB phase, also determines the spectral properties of the stars. The contribution of these stars to the integrated light of the population is thus obtained in a consistent way. We find that the emission in the mid infrared is about one order of magnitude larger when dust is taken into account in an intermediate age population, irrespective of the particular mixture adopted. The dependence of the integrated colors on the metallicity and age is discussed, with particular emphasis on the problem of age-metallicity degeneracy. We show that, contrary to the case of optical or near infrared colors, the adoption of a suitable pass-band in the mid infrared allows a fair separation of the two effects. We suggest intermediate redshift elliptical galaxies as possible targets of this method of solving the age-metallicity dilemma. The new SSP models constitute a first step in a more extended study aimed at modelling the spectral properties of the galaxies from the ultraviolet to the far infrared.Comment: 16 pages, 10 figures, to appear in A&

    Communicating via ignorance: Increasing communication capacity via superposition of order

    Full text link
    Classically, no information can be transmitted through a depolarising, that is a completely noisy, channel. We show that by combining a depolarising channel with another channel in an indefinite causal order---that is, when there is superposition of the order that these two channels were applied---it becomes possible to transmit significant information. We consider two limiting cases. When both channels are fully-depolarising, the ideal limit is communication of 0.049 bits; experimentally we achieve (3.4±0.2)×10−2(3.4{\pm}0.2){\times}10^{-2} bits. When one channel is fully-depolarising, and the other is a known unitary, the ideal limit is communication of 1 bit. We experimentally achieve 0.64±{\pm}0.02 bits. Our results offer intriguing possibilities for future communication strategies beyond conventional quantum Shannon theory

    Labyrinthine pathways towards supercycle attractors in unimodal maps

    Full text link
    We uncover previously unknown properties of the family of periodic superstable cycles in unimodal maps characterized each by a Lyapunov exponent that diverges to minus infinity. Amongst the main novel properties are the following: i) The basins of attraction for the phases of the cycles develop fractal boundaries of increasing complexity as the period-doubling structure advances towards the transition to chaos. ii) The fractal boundaries, formed by the preimages of the repellor, display hierarchical structures organized according to exponential clusterings that manifest in the dynamics as sensitivity to the final state and transient chaos. iii) There is a functional composition renormalization group (RG) fixed-point map associated to the family of supercycles. iv) This map is given in closed form by the same kind of qq-exponential function found for both the pitchfork and tangent bifurcation attractors. v) There is a final stage ultra-fast dynamics towards the attractor with a sensitivity to initial conditions that decreases as an exponential of an exponential of time.Comment: 8 pages, 13 figure
    • …
    corecore