53,781 research outputs found

    DC magnetic field generation in unmagnetized shear flows

    Get PDF
    The generation of DC magnetic fields in unmagnetized plasmas with velocity shear is predicted for non relativistic and relativistic scenarios either due to thermal effects or due to the onset of the Kelvin-Helmholtz instability (KHI). A kinetic model describes the growth and the saturation of the DC field. The predictions of the theory are confirmed by multidimensional particle-in-cell simulations, demonstrating the formation of long lived magnetic fields (t∼100sωpi−1t \sim 100s \omega_{pi}^{-1}) along the full longitudinal extent of the shear layer, with transverse width on the electron length scale (γ0c/ωpe\sqrt{\gamma_0}c/\omega_{pe}), reaching magnitudes eBDC/mecωpe∼β0γ0eB_{\mathrm{DC}}/m_ec\omega_{pe}\sim \beta_0\sqrt{\gamma_0}

    Electron-scale shear instabilities: magnetic field generation and particle acceleration in astrophysical jets

    Get PDF
    Strong shear flow regions found in astrophysical jets are shown to be important dissipation regions, where the shear flow kinetic energy is converted into electric and magnetic field energy via shear instabilities. The emergence of these self-consistent fields make shear flows significant sites for radiation emission and particle acceleration. We focus on electron-scale instabilities, namely the collisionless, unmagnetized Kelvin-Helmholtz instability (KHI) and a large-scale dc magnetic field generation mechanism on the electron scales. We show that these processes are important candidates to generate magnetic fields in the presence of strong velocity shears, which may naturally originate in energetic matter outburst of active galactic nuclei and gamma-ray bursters. We show that the KHI is robust to density jumps between shearing flows, thus operating in various scenarios with different density contrasts. Multidimensional particle-in-cell (PIC) simulations of the KHI, performed with OSIRIS, reveal the emergence of a strong and large-scale dc magnetic field component, which is not captured by the standard linear fluid theory. This dc component arises from kinetic effects associated with the thermal expansion of electrons of one flow into the other across the shear layer, whilst ions remain unperturbed due to their inertia. The electron expansion forms dc current sheets, which induce a dc magnetic field. Our results indicate that most of the electromagnetic energy developed in the KHI is stored in the dc component, reaching values of equipartition on the order of 10−310^{-3} in the electron time-scale, and persists longer than the proton time-scale. Particle scattering/acceleration in the self generated fields of these shear flow instabilities is also analyzed

    Twisting Null Geodesic Congruences, Scri, H-Space and Spin-Angular Momentum

    Full text link
    The purpose of this work is to return, with a new observation and rather unconventional point of view, to the study of asymptotically flat solutions of Einstein equations. The essential observation is that from a given asymptotically flat space-time with a given Bondi shear, one can find (by integrating a partial differential equation) a class of asymptotically shear-free (but, in general, twistiing) null geodesic congruences. The class is uniquely given up to the arbitrary choice of a complex analytic world-line in a four-parameter complex space. Surprisingly this parameter space turns out to be the H-space that is associated with the real physical space-time under consideration. The main development in this work is the demonstration of how this complex world-line can be made both unique and also given a physical meaning. More specifically by forcing or requiring a certain term in the asymptotic Weyl tensor to vanish, the world-line is uniquely determined and becomes (by several arguments) identified as the `complex center-of-mass'. Roughly, its imaginary part becomes identified with the intrinsic spin-angular momentum while the real part yields the orbital angular momentum.Comment: 26 pages, authors were relisted alphabeticall

    Transverse electron-scale instability in relativistic shear flows

    Get PDF
    Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic (≫c/ωpe\gg c/\omega_{pe}) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales

    Shelf-Ocean material exchange influencing the Atlantic chemical composition off NW Iberian margin since the last glaciation

    Get PDF
    Rivers are the main conduit of sediment to the shelf. The basin geology, the drainage area and the discharge rate are the major factors that determine their sediment load (Milliman and Syvistski, 1992). Besides suspended particles, dissolved components may also give some information on the eroded crust. Sr isotopes in carbonate shells of biological organisms have been used to study, in the geological record, the influence exerted by the chemical weathering of the continental crust on the seawater composition (Macdougall, 1991). In this work, Sr isotope ratios obtained in tests of foraminifera representing the last 40 ka are presented and discussed in the scope of the palaeogeographical evolution of NW Iberia. This work aims to present and discuss the results of Sr isotope analyses (performed, by TIMS, in the Isotope Geology Laboratory of the University of Aveiro) of tests of two species of foraminifera, from nine samples taken along the OMEX core KC 024-19 (181 cm; 42°08’98’’N, 10°29´96’’W, and 2765m), collected in the Galicia Bank area, off Galicia. Taking into account that Sr contained in the carbonate tests is usually considered as preserving the signature of the contemporaneous seawater, one planktonic species (Globigerina bulloides) and one benthic species (Cibicides wuellerstorfi) were selected in order to try to detect Sr isotope variations both through time and between two different levels of the water column. The core age model, which records the last 40 ka, is based on a combination of oxygen isotope stratigraphy, eight AMS 14C datings and the synchronisation of the last four Heinrich Events in the Iberian Margin sedimentary records. As a whole, the obtained 87Sr/86Sr ratios vary between 0.709209 and 0.709108, with a mean 2σ error of 0.000025. These values lie within the range of modern marine Sr isotope ratios (0.70910-0.70922), as previously defined using analyses of both seawater and marine carbonates (see compilation by Faure and Mensing, 2005). Despite their small variation, the 87Sr/86Sr ratios obtained in G. bulloides seem to indicate that Sr dissolved in seawater at the KC 024-19 core site became slightly less radiogenic after the Last Glacial Maximum (LGM). This decrease is concomitant with diminishing amounts of the detrital components in the sediments (Fig. 1). Therefore, both the composition of dissolved Sr, as revealed by results on tests of planktonic foraminifera, and the proportions of suspended terrigenous particulate material arriving at the KC 024-19 site point to a decreasing importance of the contribution of the erosion of the Iberian Variscan crust since the Last Glacial Maximum and in the Holocene. The 87Sr/86Sr ratios measured in tests of benthic foraminifera (C. wuellerstorfi) are more erratic and no correlation can be established with palaeogeographical/palaeoclimatic constraints. The difference between the behaviour of Sr compositions in G. bulloides and C. wuellerstorfi may indicate that whilst the planktonic foraminifera should reproduce very closely the seawater composition, the benthic organisms should, in addition to the major role of seawater, also be affected by some sort of interaction with the sediments. As such, planktonic foraminifera are probably more reliable indicators of seawater composition in studies involving very small periods and corresponding very slight variations of the 87Sr/86Sr ratios. Taking into account that G. bulloides is a common planktonic species (living mostly in the first 50m of the water column), whose tests seem to be in equilibrium with sea water composition, variations in its 87Sr/86Sr ratios can be related with changes in the chemical composition of the water of the Atlantic Ocean off NW Iberian Margin. The highest 87Sr/86Sr values are contemporaneous with a period of low sea level (about -140 m; Dias et al., 2000) during the LGM. According to Dias et al. (2000) at 18 ka BP the shoreline was close to the shelf break. The summital parts of the Gerês and Estrela mountains were covered by local glaciers and close to the coast freezing occurred frequently. The river catchments, which extended far to the shelf, received more rainfall due to a longer, compared to present day conditions, wet season, which promoted both physical and chemical weathering. Higher pluviosity combined with the effect of spring ice melting maintained high river discharge and consequently caused very important sediment supply to the coastal zone. The extremely narrow shelf was a very energetic environment due to sea bottom inclination and very limited long wave refraction. Therefore, at that time, a long wet season and very competent rivers should have caused important erosion of the Variscan basement in NW Iberia. Additionally, then, the shoreline was much closer to the KC 024-19 site. The combination of all these factors favoured an important deposition of terrigenous sediments and the local slight enrichment in radiogenic Sr of the seawater. With sea level rise, after the deglaciation and during the Holocene, the river estuaries became progressively far away from the shelf break. Their competence of transport also became progressively reduced and the offshore transport of detrital sediments became progressively lower. Conversely the biogenic carbonate proportion in the sediments increased, due to lower dilution by the terrigenous particles. Simultaneously, the values of 87Sr/86Sr in the seawater at the KC 024-19 site became lower, as a consequence of a complete homogenization with the ocean global composition, which was now more effective with the increasing distance towards shoreline

    On the particle spectrum and the conformal window

    Get PDF
    We study the SU(3) gauge theory with twelve flavours of fermions in the fundamental representation as a prototype of non-Abelian gauge theories inside the conformal window. Guided by the pattern of underlying symmetries, chiral and conformal, we analyze the two-point functions theoretically and on the lattice, and determine the finite size scaling and the infinite volume fermion mass dependence of the would-be hadron masses. We show that the spectrum in the Coulomb phase of the system can be described in the context of a universal scaling analysis and we provide the nonperturbative determination of the fermion mass anomalous dimension gamma*=0.235(46) at the infrared fixed point. We comment on the agreement with the four-loop perturbative prediction for this quantity and we provide a unified description of all existing lattice results for the spectrum of this system, them being in the Coulomb phase or the asymptotically free phase. Our results corroborate the view that the fixed point we are studying is not associated to a physical singularity along the bare coupling line and estimates of physical observables can be attempted on either side of the fixed point. Finally, we observe the restoration of the U(1) axial symmetry in the two-point functions.Comment: 40 pages, 22 figure

    One,Two,Zero: Scales of Strong Interactions

    Full text link
    We discuss our results on QCD with a number of fundamental fermions ranging from zero to sixteen. These theories exhibit a wide array of fascinating phenomena which have been under close scrutiny, especially in recent years, first and foremost is the approach to conformality. To keep this review focused, we have chosen scale generation, or lack thereof as a guiding theme, however the discussion will be set in the general framework of the analysis of the phases and phase transitions of strong interactions at zero and nonzero temperature.Comment: 15 pages, prepared for IJMPA Special Issue 'Recent Nonperturbative Developments in QCD-like Theories
    • …
    corecore