41,238 research outputs found

    Exclusive glueball production in high energy nucleus-nucleus collisions

    Get PDF
    The cross sections for the glueball candidates production in quasi-real photon-photon collisions and on central diffraction processes, i.e. double Pomeron exchange, in heavy ion interactions at RHIC and LHC are computed. The rates for these distinct production channels are compared and they may be a fruitful approach to the investigation of glueballs.Comment: 6 pages, 2 tables. Final version to be published in Physical Review

    Meson decay in the Fock-Tani Formalism

    Full text link
    The Fock-Tani formalism is a first principle method to obtain effective interactions from microscopic Hamiltonians. Usually this formalism was applied to scattering, here we introduced it to calculate partial decay widths for mesons.Comment: Presented at HADRON05 XI. "International Conference on Hadron Spectroscopy" Rio de Janeiro, Brazil, August 21 to 26, 200

    Meson decay in a corrected 30P3^P_0 model

    Full text link
    Extensively applied to both light and heavy meson decay and standing as one of the most successful strong decay models is the 30P3^P_0 model, in which qqˉq\bar{q} pair production is the dominant mechanism. The pair production can be obtained from the non-relativistic limit of a microscopic interaction Hamiltonian involving Dirac quark fields. The evaluation of the decay amplitude can be performed by a diagrammatic technique for drawing quark lines. In this paper we use an alternative approach which consists in a mapping technique, the Fock-Tani formalism, in order to obtain an effective Hamiltonian starting from same microscopic interaction. An additional effect is manifest in this formalism associated to the extended nature of mesons: bound-state corrections. A corrected 30P3^P_0 is obtained and applied, as an example, to b1ωπb_{1}\to\omega\pi and a1ρπa_{1}\to\rho\pi decays.Comment: 3 figures. To appear in Physical Review

    VSR symmetries in the DKP algebra: the interplay between Dirac and Elko spinor fields

    Full text link
    VSR symmetries are here naturally incorporated in the DKP algebra on the spin-0 and the spin-1 DKP sectors. We show that the Elko (dark) spinor fields structure plays an essential role on accomplishing this aim, unravelling hidden symmetries on the bosonic DKP fields under the action of discrete symmetries.Comment: 17 page

    Information entropy of classical versus explosive percolation

    Full text link
    We study the Shannon entropy of the cluster size distribution in classical as well as explosive percolation, in order to estimate the uncertainty in the sizes of randomly chosen clusters. At the critical point the cluster size distribution is a power-law, i.e. there are clusters of all sizes, so one expects the information entropy to attain a maximum. As expected, our results show that the entropy attains a maximum at this point for classical percolation. Surprisingly, for explosive percolation the maximum entropy does not match the critical point. Moreover, we show that it is possible determine the critical point without using the conventional order parameter, just analysing the entropy's derivatives.Comment: 6 pages, 6 figure

    Flag-Dipole Spinor Fields in ESK Gravities

    Full text link
    We consider the Riemann-Cartan geometry as a basis for the Einstein-Sciama-Kibble theory coupled to spinor fields: we focus on f(R)f(R) and conformal gravities, regarding the flag-dipole spinor fields, type-(4) spinor fields under the Lounesto classification. We study such theories in specific cases given for instance by cosmological scenarios: we find that in such background the Dirac equation admits solutions that are not Dirac spinor fields, but in fact the aforementioned flag-dipoles ones. These solutions are important from a theoretical perspective, as they evince that spinor fields are not necessarily determined by their dynamics, but also a discussion on their structural (algebraic) properties must be carried off. Furthermore, the phenomenological point of view is shown to be also relevant, since for isotropic Universes they circumvent the question whether spinor fields do undergo the Cosmological Principle.Comment: 18 pages, improved versio
    corecore