63,375 research outputs found
Solar type II radio bursts associated with CME expansions as shown by EUV waves
We investigate the physical conditions of the sources of two metric Type-II
bursts associated with CME expansions with the aim of verifying the
relationship between the shocks and the CMEs, comparing the heights of the
radio sources and the heights of the EUV waves associated with the CMEs. The
heights of the EUV waves associated with the events were determined in relation
to the wave fronts. The heights of the shocks were estimated by applying two
different density models to the frequencies of the Type-II emissions and
compared with the heights of the EUV waves. For the 13 June 2010 event, with
band-splitting, the shock speed was estimated from the frequency drifts of the
upper and lower branches of the harmonic lane, taking into account the H/F
frequency ratio fH/fF = 2. Exponential fits on the intensity maxima of the
branches revealed to be more consistent with the morphology of the spectrum of
this event. For the 6 June 2012 event, with no band-splitting and with a clear
fundamental lane on the spectrum, the shock speed was estimated directly from
the frequency drift of the fundamental emission, determined by linear fit on
the intensity maxima of the lane. For each event, the most appropriate density
model was adopted to estimate the physical parameters of the radio source. The
13 June 2010 event presented a shock speed of 664-719 km/s, consistent with the
average speed of the EUV wave fronts of 609 km/s. The 6 June 2012 event was
related to a shock of speed of 211-461 km/s, also consistent with the average
speed of the EUV wave fronts of 418 km/s. For both events, the heights of the
EUV wave revealed to be compatible with the heights of the radio source,
assuming a radial propagation of the shock.Comment: Accepted for publication in Astronomy and Astrophysic
A nonextensive insight to the stellar initial mass function
the present paper, we propose that the stellar initial mass distributions as
known as IMF are best fitted by -Weibulls that emerge within nonextensive
statistical mechanics. As a result, we show that the Salpeter's slope of
2.35 is replaced when a -Weibull distribution is used. Our results
point out that the nonextensive entropic index represents a new approach
for understanding the process of the star-forming and evolution of massive
stars.Comment: 5 pages, 2 figures, Accepted to EP
Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars
One of the most dramatic events in the life of a low-mass star is the He
flash, which takes place at the tip of the red giant branch (RGB) and is
followed by a series of secondary flashes before the star settles into the
zero-age horizontal branch (ZAHB). Yet, no stars have been positively
identified in this key evolutionary phase, mainly for two reasons: first, this
pre-ZAHB phase is very short compared to other major evolutionary phases in the
life of a star; and second, these pre-ZAHB stars are expected to overlap the
loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in
the color-magnitude diagram (CMD). We investigate the possibility of detecting
these stars through stellar pulsations, since some of them are expected to
rapidly cross the Cepheid/RR Lyrae instability strip in their route from the
RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a
consequence of their very high evolutionary speed, some of these stars may
present anomalously large period change rates. We constructed an extensive grid
of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for
the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR
Lyrae stars with high period change rates are found. Our results suggest that
some -- but certainly not all -- of the RR Lyrae stars in M3 with large period
change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and
stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
Gravitational Collapse of Massless Scalar Field with Negative Cosmological Constant in (2+1) Dimensions
The 2+1-dimensional geodesic circularly symmetric solutions of
Einstein-massless-scalar field equations with negative cosmological constant
are found and their local and global properties are studied. It is found that
one of them represents gravitational collapse where black holes are always
formed.Comment: no figure
Strong evidences for a nonextensive behavior of the rotation period in Open Clusters
Time-dependent nonextensivity in a stellar astrophysical scenario combines
nonextensive entropic indices derived from the modified Kawaler's
parametrization, and , obtained from rotational velocity distribution. These
's are related through a heuristic single relation given by , where is the cluster age. In a nonextensive
scenario, these indices are quantities that measure the degree of
nonextensivity present in the system. Recent studies reveal that the index
is correlated to the formation rate of high-energy tails present in the
distribution of rotation velocity. On the other hand, the index is
determined by the stellar rotation-age relationship. This depends on the
magnetic field configuration through the expression , where
and denote the saturation level of the star magnetic field and its
topology, respectively. In the present study, we show that the connection
is also consistent with 548 rotation period data for single
main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of
2.5 from our unsaturated model shows that the mean magnetic field
topology of these stars is slightly more complex than a purely radial field.
Our results also suggest that stellar rotational braking behavior affects the
degree of anti-correlation between and cluster age . Finally, we suggest
that stellar magnetic braking can be scaled by the entropic index .Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201
Distinct magnetic signatures of fractional vortex configurations in multiband superconductors
Vortices carrying fractions of a flux quantum are predicted to exist in
multiband superconductors, where vortex core can split between multiple
band-specific components of the superconducting condensate. Using the
two-component Ginzburg-Landau model, we examine such vortex configurations in a
two-band superconducting slab in parallel magnetic field. The fractional
vortices appear due to the band-selective vortex penetration caused by
different thresholds for vortex entry within each band-condensate, and
stabilize near the edges of the sample. We show that the resulting fractional
vortex configurations leave distinct fingerprints in the static measurements of
the magnetization, as well as in ac dynamic measurements of the magnetic
susceptibility, both of which can be readily used for the detection of these
fascinating vortex states in several existing multiband superconductors.Comment: 5 pages, 4 figure
Physical regularization for the spin-1/2 Aharonov-Bohm problem in conical space
We examine the bound state and scattering problem of a spin-one-half particle
undergone to an Aharonov-Bohm potential in a conical space in the
nonrelativistic limit. The crucial problem of the \delta-function singularity
coming from the Zeeman spin interaction with the magnetic flux tube is solved
through the self-adjoint extension method. Using two different approaches
already known in the literature, both based on the self-adjoint extension
method, we obtain the self-adjoint extension parameter to the bound state and
scattering scenarios in terms of the physics of the problem. It is shown that
such a parameter is the same for both situations. The method is general and is
suitable for any quantum system with a singular Hamiltonian that has bound and
scattering states.Comment: Revtex4, 5 pages, published versio
High-precision abundances of elements in Kepler LEGACY stars. Verification of trends with stellar age
HARPS-N spectra with S/N > 250 and MARCS model atmospheres were used to
derive abundances of C, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Zn, and Y in ten
stars from the Kepler LEGACY sample (including the binary pair 16 Cyg A and B)
selected to have metallicities in the range -0.15 < [Fe/H] < +0.15 and ages
between 1 and 7 Gyr. Stellar gravities were obtained from seismic data and
effective temperatures were determined by comparing non-LTE iron abundances
derived from FeI and FeII lines. Available non-LTE corrections were also
applied when deriving abundances of the other elements. The results support the
[X/Fe]-age relations previously found for solar twins. [Mg/Fe], [Al/Fe], and
[Zn/Fe] decrease by ~0.1 dex over the lifetime of the Galactic thin disk due to
delayed contribution of iron from Type Ia supernovae relative to prompt
production of Mg, Al, and Zn in Type II supernovae. [Y/Mg] and [Y/Al], on the
other hand, increase by ~0.3 dex, which can be explained by an increasing
contribution of s-process elements from low-mass AGB stars as time goes on. The
trends of [C/Fe] and [O/Fe] are more complicated due to variations of the ratio
between refractory and volatile elements among stars of similar age. Two stars
with about the same age as the Sun show very different trends of [X/H] as a
function of elemental condensation temperature Tc and for 16 Cyg, the two
components have an abundance difference, which increases with Tc. These
anomalies may be connected to planet-star interactions.Comment: 13 pages with 7 figures. Accepted for publication in A&
- …