263 research outputs found

    Chironomidae (Diptera, Insecta) do reservatório de Furnas (MG) e sua relação com a qualidade da água.

    Get PDF
    Resumo: Com a crescente expansão da criação de peixes em tanques rede advinda da prática da aquicultura, alterações na qualidade da água e em todo o ecossistema relacionado podem ocorrer. Sabe-se que a ocorrência de larvas de certas espécies da família Chironomidae (Diptera) associada a variáveis físicas e químicas da água pode ser adotada como indicador de impactos. Este trabalho teve como principal objetivo levantar a fauna de Chironomidae presente na área profundal do entorno de tanques rede no Reservatório de Furnas (MG) e determinar sua relação com a qualidade da água. O sedimento de fundo foi coletado com o auxílio de uma draga de Ekman-Birge, em tréplicas, em seis pontos com 16 m de profundidade em média, sendo um ponto localizado em área sem produção aquícola e os demais em pontos com produção. Após a coleta, as amostras foram triadas em laboratório utilizando-se microscópio estereoscópico e as larvas foram montadas em lâmina para identificação taxonômica em nível de gênero. Ao todo, 765 indivíduos foram identificados, sendo em sua maioria da subfamília Chironominae. Os indivíduos foram enquadrados em grupos tróficos funcionais, onde se encontrou uma maior abundância de indivíduos coletores catadores indicando alta concentração de matéria orgânica no sistema. Abstract: With the increasing expansion of fish farming in cages arising from the practice of aquaculture, changes in water quality and all related ecosystem may occur. It is known that the occurrence of larvae of certain species of the family Chironomidae (Diptera) associated with physical and chemical parameters can be adopted as an indicator of impacts. This study aimed to raise the Chironomidae fauna present in the deep area around cages in Furnas Reservoir (MG) and to determine its relationship with water quality. The bottom sediment was collected with the aid of an Ekman-Birge dredge in rejoinders in six points of 16 m deep on average, with a point located in an area without aquaculture and other on points with production. After collection, the samples were screened in the laboratory using a stereoscopic microscope and larvae were mounted on slides for taxonomic identification at genus level. In all, 765 individuals were identified, mostly subfamily Chironominae. Individuals were classified into functional feeding groups, where they found a greater abundance of individuals collectors gatherers indicating high concentration of organic matter in the system

    Bipolaron Binding in Quantum Wires

    Get PDF
    A theory of bipolaron states in quantum wires with a parabolic potential well is developed applying the Feynman variational principle. The basic parameters of the bipolaron ground state (the binding energy, the number of phonons in the bipolaron cloud, the effective mass, and the bipolaron radius) are studied as a function of sizes of the potential well. Two cases are considered in detail: a cylindrical quantum wire and a planar quantum wire. Analytical expressions for the bipolaron parameters are obtained at large and small sizes of the quantum well. It is shown that at R1R\gg 1 [where RR means the radius (halfwidth) of a cylindrical (planar) quantum wire, expressed in Feynman units], the influence of confinement on the bipolaron binding energy is described by the function 1/R2\sim 1/R^{2} for both cases, while at small sizes this influence is different in each case. In quantum wires, the bipolaron binding energy W(R)W(R) increases logarithmically with decreasing radius. The shapes and the sizes of a nanostructure, which are favorable for observation of stable bipolaron states, are determined.Comment: 17 pages, 6 figures, E-mail addresses: [email protected]; [email protected]

    Physical nature of critical wave functions in Fibonacci systems

    Full text link
    We report on a new class of critical states in the energy spectrum of general Fibonacci systems. By introducing a transfer matrix renormalization technique, we prove that the charge distribution of these states spreads over the whole system, showing transport properties characteristic of electronic extended states. Our analytical method is a first step to find out the link between the spatial structure of these critical wave functions and the quasiperiodic order of the underlying lattice.Comment: REVTEX 3.0, 11 pages, 2 figures available upon request. To appear in Phys. Rev. Let

    Primordial Hypermagnetic Fields and Triangle Anomaly

    Get PDF
    The high-temperature plasma above the electroweak scale 100\sim 100 GeV may have contained a primordial hypercharge magnetic field whose anomalous coupling to the fermions induces a transformation of the hypermagnetic energy density into fermionic number. In order to describe this process, we generalize the ordinary magnetohydrodynamical equations to the anomalous case. We show that a not completely homogeneous hypermagnetic background induces fermion number fluctuations, which can be expressed in terms of a generic hypermagnetic field configuration. We argue that, depending upon the various particle physics parameters involved in our estimate (electron Yukawa coupling, strength of the electroweak phase transition) and upon the hypermagnetic energy spectrum, sizeable matter-antimatter fluctuations can be generated in the plasma. These fluctuations may modify the predictions of the standard Big Bang nucleosynthesis (BBN). We derive constraints on the magnetic fields from the requirement that the homogeneous BBN is not changed. We analyse the influence of primordial magnetic fields on the electroweak phase transition and show that some specific configurations of the magnetic field may be converted into net baryon number at the electroweak scale.Comment: Latex, 53 pages, 8 eps figure

    Isospin-rich nuclei in neutron star matter

    Get PDF
    Stability of nuclei beyond the drip lines in the presence of an enveloping gas of nucleons and electrons, as prevailing in the inner crust of a neutron star, is studied in the temperature-dependent Thomas-Fermi framework. A limiting asymmetry in the isospin space beyond which nuclei cannot exist emerges from the calculations. The ambient conditions like temperature, baryon density and neutrino concentration under which these exotic nuclear systems can be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and 10 PS-files for figure

    Isospin-rich nuclei in neutron star matter

    Get PDF
    Stability of nuclei beyond the drip lines in the presence of an enveloping gas of nucleons and electrons, as prevailing in the inner crust of a neutron star, is studied in the temperature-dependent Thomas-Fermi framework. A limiting asymmetry in the isospin space beyond which nuclei cannot exist emerges from the calculations. The ambient conditions like temperature, baryon density and neutrino concentration under which these exotic nuclear systems can be formed are studied in some detail.Comment: Submitted to Phy. Rev. C: Revtex version of manuscript 22 pages and 10 PS-files for figure

    Mobile small polaron

    Full text link
    Extending the Froehlich polaron problem to a discrete ionic lattice we study a polaronic state with a small radius of the wave function but a large size of the lattice distortion. We calculate the energy dispersion and the effective mass of the polaron with the 1/\lambda perturbation theory and with the exact Monte Carlo method in the nonadiabatic and adiabatic regimes, respectively. The ``small'' Froehlich polaron is found to be lighter than the small Holstein polaron by one or more orders of magnitude.Comment: 4 pages, 4 figures, published versio

    Hypermagnetic Knots, Chern-Simons Waves and the Baryon Asymmetry

    Get PDF
    At finite hyperconductivity and finite fermionic density the flux lines of long range hypermagnetic fields may not have a topologically trivial structure. The combined evolution of the chemical potentials and of pseudoscalar fields (like the axial Higgs), possibly present for temperatures in the TeV range, can twist the hypercharge flux lines, producing, ultimately, hypermagnetic knots (HK). The dynamical features of the HK depend upon the various particle physics parameters of the model (pseudoscalar masses and couplings, strength of the electroweak phase transition, hyperconductivity of the plasma) and upon the magnitude of the primordial flux sitting in topologically trivial configurations of the hypermagnetic field. We study different cosmological scenarios where HK can be generated. We argue that the fermionic number sitting in HK can be released producing a seed for the Baryon Asymmetry of the Universe (BAU) provided the typical scale of the knot is larger than the diffusivity length scale. We derive constraints on the primordial hypermagnetic flux required by our mechanism and we provide a measure of the parity breaking by connecting the degree of knottedness of the flux lines to the BAU. We rule out the ordinary axion as a possible candidate for production (around temperatures of the order of the GeV) of {\em magnetic} knots since the produced {\em electromagnetic} helicity is negligible (for cosmological standard) if the initial amplitude of the axion oscillations is of the order of the Peccei-Quinn breaking scale.Comment: 30 pages in Revtex style, 8 figure

    Nuclei in Strongly Magnetised Neutron Star Crusts

    Full text link
    We discuss the ground state properties of matter in outer and inner crusts of neutron stars under the influence of strong magnetic fields. In particular, we demonstrate the effects of Landau quantization of electrons on compositions of neutron star crusts. First we revisit the sequence of nuclei and the equation of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS) model in the presence of strong magnetic fields and most recent versions of the theoretical and experimental nuclear mass tables. Next we deal with nuclei in the inner crust. Nuclei which are arranged in a lattice, are immersed in a nucleonic gas as well as a uniform background of electrons in the inner crust. The Wigner-Seitz approximation is adopted in this calculation and each lattice volume is replaced by a spherical cell. The coexistence of two phases of nuclear matter - liquid and gas, is considered in this case. We obtain the equilibrium nucleus corresponding to each baryon density by minimizing the free energy of the cell. We perform this calculation using Skyrme nucleon-nucleon interaction with different parameter sets. We find nuclei with larger mass and charge numbers in the inner crust in the presence of strong magnetic fields than those of the zero field case for all nucleon-nucleon interactions considered here. However, SLy4 interaction has dramatic effects on the proton fraction as well as masses and charges of nuclei. This may be attributed to the behaviour of symmetry energy with density in the sub-saturation density regime. Further we discuss the implications of our results to shear mode oscillations of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South Africa in November, 2011 and to be published in a book by Springer Verla

    Magnetic Knots as The origin of Spikes in the Gravitational Waves Backgrounds

    Get PDF
    The dynamical symmetries of hot and electrically neutral plasmas in a highly conducting medium suggest that, after the epoch of the electron-positron annihilation, magnetohydrodynamical configurations carrying a net magnetic helicity can be present. The simultaneous conservation of the magnetic flux and helicity implies that the (divergence free) field lines will possess inhomogeneous knot structures acting as source seeds in the evolution equations of the scalar, vector and tensor fluctuations of the background geometry. We give explicit examples of magnetic knot configurations with finite energy and we compute the induced metric fluctuations. Since magnetic knots are (conformally) coupled to gravity via the vertex dictated by the equivalence principle, they can imprint spikes in the gravitational wave spectrum for frequencies compatible with the typical scale of the knot corresponding, in our examples, to a present frequency range of 101110^{-11}--101210^{-12} Hertz. At lower frequencies the spectrum is power-suppressed and well below the COBE limit. For smaller length scales (i.e. for larger frequencies) the spectrum is exponentially suppressed and then irrelevant for the pulsar bounds. Depending upon the number of knots of the configuration, the typical amplitude of the gravitational wave logarithmic energy spectrum (in critical units) can be even four orders of magnitude larger than the usual flat (inflationary) energy spectrum generated thanks to the parametric amplification of the vacuum fluctuations.Comment: Accepted for publication in Physical Review D, 20 pages in RevTex style, 4 Encapsulated figure
    corecore