22 research outputs found

    Fast Detection Of Paracetamol On A Gold Nanoparticle-chitosan Substrate By Sers

    Get PDF
    A fast method for detecting pharmaceutical drugs, such as paracetamol, by surface-enhanced Raman spectroscopy (SERS) using a gold nanoparticle substrate was studied. Gold nanoparticles were synthesized using chitosan (AuNP-chitosan) as a reductant and capping agent and subsequently deposited on glass slides as a thin film. The SERS performance of AuNP-chitosan films was evaluated using methylene blue (MB, 10-6 mol L-1) as a SERS probe molecule. The method is based on drop-drying an analyte solution (paracetamol, 10-3 mol L-1) onto a substrate surface and subsequently analyzing by Raman spectroscopy. The spectra were obtained in 10 seconds with two accumulations and exhibit a high signal-to-noise ratio. This preliminary study supports the AuNP-chitosan substrate as a SERS sensor, for a convenient analytical method for detection of paracetamol and other pharmaceutical drug molecules. © the Partner Organisations 2014.61135643568Halling-Sorensen, B., Nielsen, N., Lansky, P.F., Ingersley, F., Hansen, L., Lutzhoft, H.C., Jorgensen, S.E., (1998) Chemosphere, 36, p. 357Daughton, C.G., Ternes, T.A., (1999) Environ. Health Perspect., 107, p. 907Klimova, K., Leitner, J., (2012) Thermochim. Acta, 550, p. 59Parojcic, J., Karljikovic-Rajic, K., Duric, Z., Jovanovic, M., Ibric, S., (2003) Biopharm. Drug Dispos., 24, p. 309Holm, J.V., Rugge, K., Bjerg, P.L., Christensen, T.H., (1995) Environ. Sci. Technol., 29, p. 1415Ternes, T.A., (1998) Water Res., 32, p. 3245Reddersen, K., Heberer, T., Dunnbier, U., (2002) Chemosphere, 49, p. 539Zwiener, C., Glauner, T., Frimmel, F.H., (2000) High Resolut. Chromatogr., 23, p. 474Buser, H.R., Poiger, T., Muller, M.D., (1999) Environ. Sci. Technol., 33, p. 2529Chen, L.-X., Li, D.-W., Qu, L.-L., Li, Y.-T., Long, Y.-T., (2013) Anal. Methods, 5, p. 6579Péron, O., Rinnert, E., Toury, T., Chapelle, M.L., Compere, C., (2011) Analyst, 136, p. 1018Alvarez-Puebla, R.A., Liz-Marzan, L.M., (2012) Angew. Chem., Int. Ed., 51, p. 11214Fleischmann, M., Hendra, P.J., McQuillan, A.J., (1974) Chem. Phys. Lett., 26, p. 63Le Ru, E.C., Etchegoin, P.G., (2009) Principles of Surface-enhanced Raman Spectroscopy, , Elsevier, AmsterdamAroca, R., (2006) Surface-enhanced Vibrational Spectroscopy, , John Wiley & Sons, Southern GateZhang, Y., Liu, S., Wang, L., Qin, X., Tian, J., Lu, W., Chang, G., Sun, X., (2012) RSC Adv., 2, p. 538Moula, G., Aroca, R.F., (2011) Anal. Chem., 83, p. 284Yu, W.W., White, I.M., (2012) Analyst, 137, p. 1168Zhai, W.L., Li, D.W., Qu, L.L., Fossey, J.S., Long, Y.T., (2012) Nanoscale, 4, p. 37Alsawafta, M., Badilescu, S., Packirisamy, M., Truong, V.V., (2011) React. Kinet., Mech. Catal., 104, p. 437Esumi, K., Takei, N., Yoshimura, T., (2003) Colloids Surf., B, 32, p. 117Potara, M., Maniu, D., Astilean, S., (2009) Nanotechnology, 20, p. 315602Santos, E.B., Sigoli, F.A., Mazali, I.O., (2013) Vib. Spectrosc., 68, p. 246Wang, Y.Q., Liang, W.S., Geng, C.Y., (2009) Nanoscale Res. Lett., 4, p. 684Vieira, E.F.S., Cestari, A.R., Santos, E.B., Dias, F.S., (2005) J. Colloid Interface Sci., 289, p. 42Cheng, Y.-C., Yu, C.-C., Lo, T.-Y., Liu, Y.-C., (2012) Mater. Res. Bull., 47, p. 1107Nhung, T.T., Bu, Y., Lee, S.-W., (2013) J. Cryst. Growth, 373, p. 132Xiao, G.N., Man, S.Q., (2007) Chem. Phys. Lett., 447, p. 305Ruan, C.M., Wang, W., Gu, B.H., (2007) J. Raman Spectrosc., 38, p. 568Peng, Y., Niu, Z., Huang, W., Chen, S., Li, Z., (2005) J. Phys. Chem. B, 109, p. 10880Elbagerma, M.A., Azimi, G., Edwards, H.G.M., Alajtal, A.I., Scowen, I.J., (2010) Spectrochim. Acta, Part A, 75, p. 1403Chazallon, B., Celik, Y., Focsa, C., Guinet, Y., (2006) Vib. Spectrosc., 42, p. 206Nanubolu, J.B., Burley, J.C., (2012) Mol. Pharmaceutics, 9, p. 154

    Fundamental Principia And Models Of Inter And Intramolecular Energy Transfer [princĂ­pios Fundamentais E Modelos De TransferĂȘncia De Energia Inter E Intramolecular]

    No full text
    This work outlines the historic development of the concept and main theories of energy transfer, as well as the principal experiments carried out to confirm or refute the proposed theories. Energy transfer in coordination compounds is also discussed with a focus on rare earth systems.35918411847Berlman, I.B., (1973) Energy Transfer Parameters of Aromatic Compounds, , Academic Press: New York and LondonSouza, E.R., Silva, I.G.N., Teotonio, E.E.S., Felinto, M.C.F.C., Brito, H.F., (2010) J. Lumin., 130, p. 283Kallmann, H., Furst, M., (1950) Phys. Rev., 79, p. 857Matsushita, S., Nakata, H., Kuboi, Y., Tateyama, M., (2010) J. Biol. Chem., 285, p. 10291Loura, L.M.S., Almeida, R.F.M., Silva, L.C., Prieto, M., (2009) Biochim. Biophys. Acta, 1788, p. 209Medintz, I.L., Mattoussi, H., (2009) Phys. Chem. Chem. Phys., 11, p. 17Fan, L.J., Zhang, Y., Murphy, C.B., Angell, S.E., Parker, M.F.L., Flynn, B.R., Jones Jr., W.E., (2009) Coord. Chem. Rev., 253, p. 410Mao, Z., Wang, D., (2010) Inorg. Chem., 49, p. 4922Perrin, J., (1927) Comptes Rendus Hebdomadaires des Seances de l'Academie des Sciences, 184, p. 1097Förster, T., (1948) Annalen der Physik, 2, p. 55Stryer, L., Haugland, R.P., (1967) Proceedings of the National Academy of Sciences of the United States of America, 58, p. 719Dexter, D.L., (1953) J. Chem. Phys., 21, p. 836Novo, J.B.M., Dias Jr., L.C., (2011) Quim. Nova, 34, p. 707Yersin, H., TrĂŒmbach, D., Strasser, J., (1998) Inorg. Chem., 37, p. 3209Noomnarm, U., Clegg, R.M., (2009) Photosynth. Res., 101, p. 181McGlynn, S.P., Azumi, T., Kinoshita, M., (1969) Molecular Spectroscopy of the Triplet State, , Prentice-Hall: New JerseyLakowicz, J.R., (1999) Principles of Fluorescence Spectroscopy, , Kluwer Academic/Plenum, Publishers: New YorkMullert, D.F., Houston, P.L., (1981) J. Phys. Chem., 85, p. 3563Oliveira, H.P.M., Machulek Jr., A., Legendre, A.O., Gehlen, M.H., (2003) Quim. Nova, 26, p. 564Johnson, P.C., Offen, H.W., (1972) J. Chem. Phys., 57, p. 1473Agranovich, V.M., Galanin, M.D., (1982) Electronic Excitation Energy Transfer in Condensed Matter, , North-Holland Publishing Company: Amsterdam, New York, OxfordMarcus, R.A., (1964) Annu. Rev. Phys. Chem., 15, p. 155Andrews, D.L., Demidov, A.A., (1999) Resonance Energy Transfer, , John Wiley & Sons: West SussexCamargo, A.S.S., Nunes, L.A.O., (2008) Quim. Nova, 31, p. 2083Yersin, H., Kratzer, C., (2002) Coord. Chem. Rev., 229, p. 75Ribeiro, C.T.M., Zanatta, A.R., Sartori, J., Nunes, L.A.O., Messaddeq, Y., (1998) Quim. Nova, 21, p. 521Martins, R.F., Neri, C.R., De Sousa Fo, P.C., Serra, O.A., De Oliveira, K.T., (2010) Quim. Nova, 33, p. 2118SĂĄ, G.F., Malta, O.L., DonegĂĄ, C.M., Simas, A.M., Longo, R.L., Santa-Cruz, P.A., Silva Jr., E.F., (2000) Coord. Chem. Rev., 196, p. 165Weissman, S.I., (1942) J. Chem. Phys., 10, p. 214Silva, F.R.G., Malta, O.L., Reinhard, C., GĂŒdel, H.-U., Piguet, C., Moser, J.E., BĂŒnzli, J.-C.G., (2002) J. Phys. Chem. A, 106, p. 1670Malta, O.L., (1982) Chem. Phys. Lett., 87, p. 27Smentek, L., Hess Jr., B.A., (2000) J. Alloys Compd., 300-301, p. 165Smentek, L., Hess Jr., B.A., (2001) J. Alloys Compd., 315, p. 1Smentek, L., Hess Jr., B.A., (2002) J. Alloys Compd., 336, p. 56Kushida, T., (1973) J. Phys. Soc. Jpn., 34, p. 1318Crosby, G.A., Whan, R.E., Alire, R.M., (1961) J. Chem. Phys., 34, p. 743Bhaumik, M.L., El-Sayed, M.A., (1965) J. Chem. Phys., 42, p. 787Kleinerman, M., (1969) J. Chem. Phys., 51, p. 2370Souza, E.R., (2008) Dissertação de Mestrado, , Universidade De SĂŁo Paulo, BrasilCrosby, G.A., (1966) Mol. Cryst., 1, p. 37Buono-Core, G.E., Li, H., Marciniak, B., (1990) Coord. Chem. Rev., 99, p. 55Zhang, Y., Aslan, K., Previte, M.J.R., Geddes, C.D., (2006) Chem. Phys. Lett., 432, p. 528Alaoui, I.M., (1995) J. Phys. Chem., 99, p. 13280Latva, M., Takalo, H., Mukkala, V.-M., Matachescuc, C., Rodriguez-Ubisd, J.C., Kankare, J., (1997) J. Lumin., 75, p. 149Lima, P.P., Malta, O.L., Alves Jr., S., (2005) Quim. Nova., 28, p. 805BĂŒnzli, J.-C.G., Choppin, G.R., (1989) Lanthanide Probes in Life, Chemical and Earth Sciences, , Elsevier Science Publishers: New YorkLima, P.P., Nobre, S.S., Freire, R.O., Alves Jr., S., Ferreira, R.A.S., Pischel, U., Malta, O.L., Carlos, L.D., (2007) J Phys. Chem. C, 111, p. 17627Malta, O.L., (2008) J. Non-Cryst. Solids, 354, p. 477

    Erbium And Ytterbium Co-doped Sio2:geo2 Planar Waveguide Prepared By The Sol-gel Route Using An Alternative Precursor

    No full text
    The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 ÎŒm presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Δn < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium 4I13/2 metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided. © 2007 Springer Science+Business Media, LLC.452179185Mendoza, E.A., Kempen, L.U., Sigoli, F.A., JordĂŁo, M., (2005) 13th International Workshop on Sol-gel Science and Technology-abstracts and Program, p. 437Kik, P.G., Polman, A., (1998) MRS Bull, 23, p. 48Hattori, K., Kitagawa, T., Oguma, M., Wada, M., Temmyo, J., Horiguchi, M., (1993) Electron Lett, 29, p. 357Hattori, K., Kitagawa, T., Oguma, M., Ohmori, Y., Horiguchi, M., (1994) Electron Lett, 30, p. 856Ghosh, R.N., Shmulovich, J., Kane, C.F., De Barros, M.R.X., Nykolak, G., Bruce, A.J., Becker, P.C., (1996) IEEE Photonic Technol Lett, 8, p. 518Shmulovich, J., Wong, A., Wong, Y.H., Becker, P.C., Bruce, A.J., Adar, R., (1992) Electron Lett, 28, p. 1181Van Den Hoven, G.N., Rjim, K., Polman, A., Van Dam, C., Van Uffelen, J.W.M., Smit, M.K., (1996) Appl Phys Lett, 68, p. 1886Yeatman, E.M., Ahmad, M.M., McCarthy, O., Vannucci, A., Gastaldo, P., Barbier, D., Mongardien, D., Moronvalle, C., (1999) Opt Commun, 164, p. 19Forastiere, M.A., Pelli, S., Righini, G.C., Guglielmi, M., Martucci, A., Ahmad, M.M., Yeatman, E., Vannucci, A., (2000) Fiber and Int Opt, 20, p. 29Yan, Y.C., Faber, A.J., De Wall, H., Kik, P.G., Polman, A., (1997) Appl Phys Lett, 71, p. 2922Benatsou, M., Bouzaoui, B., (1997) Opt Commun, 134, p. 143Martucci, A., Brusatin, G., Guglielmi, M., Strohhofer, C., Fick, J., Pelli, S., Righini, G.C., (1998) J Sol-Gel Sci Technol, 13, p. 535Yeatman, E.M., Pita, K., Ahmad, M.M., Vannuci, A., Fiorello, A., (1998) J Sol-Gel Sci Technol, 13, p. 517Gonçalves, R.R., Carturan, G., Zampedri, L., Ferrari, M., Montagna, M., Chiasera, A., Righini, G.C., Messaddeq, Y., (2002) Appl Phys Lett, 81, p. 28Gonçalves, R.R., Carturan, G., Zampedri, L., Ferrari, M., Chiasera, A., Montagna, M., Righini, G.C., Messaddeq, Y., (2003) J Non-Cryst Solids, 322, p. 306Gonçalves, R.R., Carturan, G., Montagna, M., Ferrari, M., Zampedri, L., Pelli, S., Righini, G.C., Messaddeq, Y., (2004) Opt Mater, 25, p. 131Sigoli, F.A., Gonçalves, R.R., Messaddeq, Y., Ribeiro, S.J.L., (2006) J Non-Cryst Solids, 352, p. 3463Sigoli, F.A., Gonçalves, R.R., De Camargo, A.S.S., Nunes, L.A.O., Messaddeq, Y., Ribeiro, S.J.L., (2007) Opt Mater, 30, p. 600Chen, D.G., Potter, B.G., Simmons, J.H., (1994) J Non-Cryst Solids, 178, p. 135Benatsou, M., Bouazoui, M., (1997) Opt Commun, 137, p. 143Simmons, K.D., Stegeman, G.I., Potter Jr, B.G., Simmons, J.H., (1994) J Non-Cryst Solids, 179, p. 254Simmons-Potter, K., Simmons, J.H., (1995) Appl Phys Lett, 66, p. 2104Grandi, S., Mustarelli, P., Magistris, A., Gallorini, M., Rizzio, E., (2002) J Non-Cryst Solids, 303, p. 208Hill, K.O., Fujii, Y., Johnson, D.C., Kawasaki, B.S., (1978) Appl Phys Lett, 32, p. 647Ohwaki, T., Takeda, M., Takai, Y., (1997) Jpn J Appl Phys, 36, p. 5507Sloof, L.H., De Dood, M.J.A., Van Blaaderen, A., Polman, A., (2001) J Non-Cryst Solids, 296, p. 15

    Nanothermometer based on intensity variation and emission lifetime of europium(III) benzoylacetonate complex

    No full text
    Temperature dependence of the photophysical properties of europium(III) complex with the benzoylcetonate ligand were evaluated. The photostability of the complex and the temperature dependence of the 5D0 → 7F2 transition band area (maximum relative sensitivity of 5.25% K−1 at 303 K) makes this complex promising as temperature probe. The temperature dependence of the 5D0 → 7F0 transition band indicates that the electron-phonon coupling is probably the main mechanism operating in the temperature dependence of the photophysical properties of the complex.192224230CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPSem informaçãoSem informação2013/22127-

    Structural Investigation And Photoluminescent Properties Of Gadolinium(iii), Europium(iii) And Terbium(iii) 3-mercaptopropionate Complexes

    No full text
    This work reports on the synthesis, crystallographic determination and spectroscopic characterization of gadolinium(III), terbium(III) and europium(III) 3-mercaptopropionate complexes, aqua-tris(3-mercaptopropionate) lanthanide(III) - [Ln(mpa)3(H2O)]. The Judd-Ofelt intensity parameters were experimentally determined from emission spectrum of the [Eu(mpa)3(H2O)]complex and they were also calculated from crystallographic data. The complexes are coordination polymers, where the units of each complex are linked together by carboxylate groups leading to an unidimensional and parallel chains that by chemical interactions form a tridimensional framework. The emission spectrum profile of the [Eu(mpa) 3(H2O)] complex is discussed based on point symmetry of the europium(III) ion, that explains the bands splitting observed in its emission spectrum. Photoluminescent analysis of the [Gd(mpa)3(H 2O)] complex show no efficient ligand excitation but an intense charge transfer band. The excitation spectra of the [Eu(mpa)3(H 2O)] and [Tb(mpa)3(H2O)] complexes do not show evidence of energy transfer from the ligand to the excited levels of these trivalent ions. Therefore the emission bands are originated only by direct f-f intraconfigurational excitation of the lantanide(III) ions. © 2013 Springer Science+Business Media New York.241203211Niu, S.Y., Yang, G.D., Zhang, Y.L., Jin, J., Ye, L., Yang, Z.Z., (2002) J Mol Struc, 608, p. 95. , 1:CAS:528:DC%2BD38XjtFKisL4%3D 10.1016/S0022-2860(01)00938-3Kuchibhatla, S., Karakoti, A.S., Bera, D., Seal, S., (2007) Prog Mater Sci, 52, p. 699. , 1:CAS:528:DC%2BD2sXksV2gt7k%3D 10.1016/j.pmatsci.2006.08.001Stock, N., Biswas, S., (2012) Chem Rev, 112, p. 933. , 1:CAS:528:DC%2BC3MXhsV2ju73P 22098087 10.1021/cr200304eGagnon, K.J., Perry, H.P., Clearfield, A., (2012) Chem Rev, 112, p. 1034. , 1:CAS:528:DC%2BC3MXhsFCmsrnK 22126609 10.1021/cr2002257Czaja, A.U., Trukhan, N., MĂŒller, U., (2009) Chem Soc Rev, 38, p. 1284. , 1:CAS:528:DC%2BD1MXkvVamu7o%3D 19384438 10.1039/b804680hPan, L., Adams, K.M., Hernandez, H.E., Wang, X., Zheng, C., Hattori, Y., Kaneko, K., (2003) J Am Chem Soc, 125, p. 3062. , 1:CAS:528:DC%2BD3sXhtFeksLs%3D 12617673 10.1021/ja028996wLi, J.-R., Kuppler, R.J., Zhou, H.-C., (2009) Chem Soc Rev, 38, p. 1477. , 1:CAS:528:DC%2BD1MXkvVamurY%3D 19384449 10.1039/b802426jKuppler, R.J., Timmons, D.J., Fang, Q.-R., Li, J.-R., Makal, T.A., Young, M.D., Yuan, D., Zhou, H.-C., (2009) Coord Chem Rev, 253, p. 3042. , 1:CAS:528:DC%2BD1MXhtlagt7zM 10.1016/j.ccr.2009.05.019Lee, J.Y., Farha, O.K., Roberts, J., Scheidt, K.A., Nguyen, S.B.T., Hupp, J.T., (2009) Chem Soc Rev, 38, p. 1450. , 1:CAS:528:DC%2BD1MXkvVamu7k%3D 19384447 10.1039/b807080fChoi, H.J., Lee, T.S., Suh, M.P., (1999) Angew Chem Int Ed, 38, p. 1405. , 1:CAS:528:DyaK1MXjsVyks7o%3D 10.1002/(SICI)1521-3773(19990517)38: 103.0.CO;2-HOuchi, A., Suzuki, Y., Ohki, Y., Koizumi, Y., (1988) Coord Chem Rev, 92, p. 29. , 1:CAS:528:DyaL1MXoslaltw%3D%3D 10.1016/0010-8545(88)85004-5Yu, C.-J., Tseng, W.-L., (2008) Langmuir, 24, p. 12717. , 1:CAS:528:DC%2BD1cXht1WlsbnI 18839969 10.1021/la802105bDevarajan, S., Vimalan, B., Sampath, S., (2004) J Colloid Interface Sci, 278, p. 126. , 1:CAS:528:DC%2BD2cXms1CmsLo%3D 15313645 10.1016/j.jcis.2004.05.038Geraldo, D.A., Duran-Lara, E.F., Aguayo, D., Cachau, R.E., Gonzalez-Nilo, F.D., Santos, L.S., (2011) Anal Bioanal Chem, 400, p. 483. , 1:CAS:528:DC%2BC3MXislCjtb8%3D 21373833 10.1007/s00216-011-4756-2D'Souza, S., Antunes, E., Litwinski, C., Nyokong, T., (2011) J Photochem Photobiol A, 220, p. 11. , 10.1016/j.jphotochem.2011.03.005Chmura, A., SzaciƂowski, K., Waksmundzka-GĂłra, A., Stasicka, Z., (2006) Nitric Oxide, 14, p. 247. , 1:CAS:528:DC%2BD28XksVWmsrg%3D 16337819 10.1016/j.niox.2005.10.005Gupta, T., Dhar, S., Nethaji, M., Chakravarty, A.R., (2004) Dalton Trans, p. 1896Kumar, P., Baidya, B., Chaturvedi, S.K., Khan, R.H., Manna, D., Manna, M., (2011) Inorg Chim Acta, 376, p. 264. , 1:CAS:528:DC%2BC3MXhtF2rtL3L 10.1016/j.ica.2011.06.022Su, Y.-T., Lan, G.-Y., Chen, W.-Y., Chang, H.-T., (2010) Anal Chem, 82, p. 8566. , 1:CAS:528:DC%2BC3cXht1ahtbrF 20873802 10.1021/ac101659dPrasad, P., Sasmal, P.K., Khan, I., Kondaiah, P., Kondaiah, A.R., (2011) Inorg Chim Acta, 372, p. 79. , 1:CAS:528:DC%2BC3MXmsleiur8%3D 10.1016/j.ica.2011.01.086Bear, J.L., Choppin, G.R., Quagliano, J.V., (1963) J Inorg Nucl Chem, 25, p. 513. , 1:CAS:528:DyaF3sXntVajsw%3D%3D 10.1016/0022-1902(63)80235-3Choppin, G.R., Martinez-Perez, L.A., (1968) Inorg Chem, 7, p. 2657. , 1:CAS:528:DyaF1MXjt1Wgtw%3D%3D 10.1021/ic50070a045Sheldrick, G.M., (2008) Acta Crystallogr A Found Crystallogr, 64, p. 112. , 10.1107/S0108767307043930Deacon, G.B., Phillips, R.J., (1980) Coord Chem Rev, 33, p. 227. , 1:CAS:528:DyaL3MXjvVOqsw%3D%3D 10.1016/S0010-8545(00)80455-5Latva, M., Takalo, H., Mukkala, V.-M., Matachescuc, C., Rodriguez-Ubisd, J.C., Kankare, J., (1997) J Lumin, 75, p. 149. , 1:CAS:528:DyaK2sXlvVKktLY%3D 10.1016/S0022-2313(97)00113-0Souza, E.R., Silva, I.G.N., Teotonio, E.E.S., Felinto, M., Brito, H.F., (2010) J Lumin, 130, p. 283. , 10.1016/j.jlumin.2009.09.004Judd, B.R., (1962) Phys Rev, 127, p. 750. , 1:CAS:528:DyaF38Xkslens7c%3D 10.1103/PhysRev.127.750Ofelt, G.S., (1962) J Chem Phys, 37, p. 511. , 1:CAS:528:DyaF3sXpvVE%3D 10.1063/1.1701366Monteiro, J., Adati, R.D., Davolos, M.R., Vicenti, J.R.M., Burrow, R.A., (2011) New J Chem, 35, p. 1234. , 1:CAS:528:DC%2BC3MXmslygsb0%3D 10.1039/c0nj00831aSĂĄ, G.F., Malta, O.L., DonegĂĄ, C.M., Simas, A.M., Longo, R.L., Santa-Cruz, P.A., Silva, Jr.E.F., (2000) Coord Chem Rev, 196, p. 165. , 10.1016/S0010-8545(99)00054-5Souza, E.R., Zulato, C.H.F., Mazali, I.O., Sigoli, F.A., (2013) J Fluor, , 10.1007/s10895-013-1219-5Monteiro, J., Mazali, I.O., Sigoli, F.A., (2011) J Fluor, 21, p. 2237. , 1:CAS:528:DC%2BC3MXhsVams7%2FP 10.1007/s10895-011-0928-

    The Influence Of Carboxilate, Phosphinate And Seleninate Groups On Luminescent Properties Of Lanthanides Complexes

    No full text
    The lanthanides(III) complexes [Ln(bza)3(H2O) n]·mH2O, [Ln(ppa)3(H2O) n]·mH2O and [Ln(abse)3(H 2O)n]·mH2O where Ln=Eu3+, Gd3+ or Tb3+ were synthesized using sodium benzoate (Nabza), sodium phenylseleninate (Naabse) and sodium phenylphosphinate (Nappa) in order to verify the influence on coordination modes and the luminescence parameters when the carbon is exchanged by phosphorus or selenium in those ligands. The complexes' stoichiometries were determined by lanthanide(III) titration, microanalysis and TGA. The coordination modes were determined as bidentate bridging and chelate by the FT-IR. The triplet state energies of the ligands were obtained by two different approaches giving a difference of about ~2000 cm-1 between them. The [Eu(abse)3(H2O)] complex shows the higher degree of covalence which was verified by the centroid of 5D0→7F0 transition (17,248 cm-1). On the other hand the [Ln(abse)3(H 2O)n]·mH2O complexes have an inefficient antenna effect verified by the low values of absolute emission quantum yields. The [Ln(ppa)3(H2O)n]·mH2O complexes have higher emission decay lifetime values among the complexes which is a result of the ability of this ligand to form coordination polymers avoiding water molecules in the first coordination sphere. The [Eu(ppa)3] complex has the highest point symmetry around europium(III) among the synthesized complexes, followed by the [Eu(bza)3(H2O) 2]·3/2(H2O) and [Eu(abse)3(H 2O)] complexes where europium(III) show similar point symmetries. As one may expect, the triplet state energy position would change the transfer and/or back energy transfer rates from ligand to metal. The calculation of these rates show that the back energy transfer rates are more affected than the transfer ones by changing the triplet state energy in the range of ~2000 cm -1. The changes in the energy transfer rates from triplet state to europium(III) levels are not sufficient to significantly modify the population of the europium(III) 5D0,1 levels and therefore the emission quantum yield. © 2014 Elsevier B.V. All rights reserved.1542231BĂŒnzli, J.-C.G., Eliseeva, S.V., Basics of lanthanide photophysics (2011) Lanthanide Luminescence: Photophysical, Analytical and Biological Aspects, p. 3. , P. HĂ€nninen, H. HĂ€rmĂ€, O.S. Wolfbeis, Springer-Verlag Berlin (Chapter 1)Binnemans, K., (2009) Chem. Rev., 109, p. 4283Binnemans, K., Rare-earth beta-diketones (2005) Handbook on the Physics and Chemistry of Rare Earths, 35, p. 107. , K.A. Gschneider, J.-C.G. BĂŒnzli, V.K. Pecharsky, Elsevier Amsterdam (Chapter 225)D'AlĂ©o, A., Pointillart, F., Ouahab, L., Andraud, C., Maury, O., (2012) Coord. Chem. Rev., 256, p. 1604Andres, J., Chauvin, A.-S., (2013) Phys. Chem. Chem. Phys., 15, p. 15981Smentek, L., Kedziorski, A., (2010) J. Lumin., 130, p. 1154Chen, S., Fan, R.-Q., Sun, C.-F., Wang, P., Yang, Y.-L., Su, Q., Mu, Y., (2012) Cryst. Growth Des., 12, p. 1337Nayak, S., Kostakis, G.E., Anson, C.E., Powell, A.K., (2010) CrystEngComm, 12, p. 3008Stucchi, E.B., Scarpari, S.L., Santos, M.A.C., Leite, S.R.A., (1998) J. Alloys Compd., 275-277, p. 89Scarpari, S.L., Stucchi, E.B., (2001) J. Alloys Compd., 323-324, p. 740Souza, A.P., Rodrigues, L.C.V., Brito, H.F., Junior, S.A., Malta, O.L., (2010) J. Lumin., 130, p. 181Freire, R.O., Rocha, G.B., Simas, A.M., (2005) Inorg. Chem., 44, p. 3299Freire, R.O., Rocha, G.B., Simas, A.M., (2009) J. Braz. Chem. Soc., 20, p. 1638Freire, R.O., Simas, A.M., (2010) J. Chem. Theory Comput., 6, p. 2019Stewart, J.J.P., (2009) MOPAC 2009 Manual, Stewart Computational Chemistry, , Colorado Springs USADeacon, G.B., Phillips, R.J., (1980) Coord. Chem. Rev., 33, p. 227Nakamoto, K., (1997) Infrared and Raman Spectra of Inorganic and Coordination Compounds - Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry, , John Wiley New YorkTanner, P.A., (2011) Lanthanide Luminescence in Solids, p. 203. , P. HĂ€nninen, H. HĂ€rmĂ€, O.S. Wolfbeis, Springer-Verlag BerlinJudd, B.R., (1962) Phys. Rev., 127, p. 750Ofelt, G.S., (1962) J. Chem. Phys., 37, p. 511Rodrigues, E.M., Souza, E.R., Monteiro, J.H.S.K., Gaspar, R.D.L., Mazali, I.O., Sigoli, F.A., (2012) J. Mater. Chem., 22, p. 24109Monteiro, J.H.S.K., Adati, R.D., Davolos, M.R., Vicenti, J.R.M., Burrow, R.A., (2011) New J. Chem., 35, p. 1234Ferreira, R.A.S., Nobre, S.S., Granadeiro, C.M., Nogueira, H.I.S., Carlos, L.D., Malta, O.L., (2006) J. Lumin., 121, p. 561Werts, M.H.V., Jukes, R.T.F., Verhoeven, J.W., (2002) Phys. Chem. Chem. Phys., 4, p. 1542Frey, S.T., Horrocks, W.D., (1995) Inorg. Chim. Acta, 229, p. 383Malta, O.L., Batista, H.J., Carlos, L.D., (2002) Chem. Phys., 282, p. 21Carlos, L.D., Malta, O.L., Albuquerque, R.Q., (2005) Chem. Phys. Lett., 415, p. 238Ferreira, R.A.S., Nolasco, M., Roma, A.C., Longo, R.L., Malta, O.L., Carlos, L.D., (2012) Chem. Eur. J., 18, p. 12130Carlos, L.D., Ferreira, R.A.S., Bermudez, V.Z., Ribeiro, S.J.L., (2009) Adv. Mater., 21, p. 509Rodrigues, M.O., JĂșnior, N.B.C., Simone, C.A., AraĂșjo, A.A.S., Brito-Silva, A.M., Paz, F.A.A., Mesquita, M.E., Freire, R.O., (2008) J. Phys. Chem. B, 112, p. 4204Allen, F.H., Cambridge structural database, Version 5.31, November 2009 (2002) Acta Crystallogr. Sect. B: Struct. Sci., 58, p. 380Chandrasekhar, V., Muralidhara, M.G., Thomas, K.R.J., Tiekink, E.R.T., (1992) Inorg. Chem., 31, p. 4707Chakov, N.E., Wernsdorfer, W., Abboud, K.A., Christou, G., (2004) Inorg. Chem., 43, p. 5919McCann, M., Murphy, E., Cardin, C., Convery, M., (1993) Polyhedron, 12, p. 1725Taylor, S.M., McIntosh, R.D., Beavers, C.M., Teat, S.J., Piligkos, S., Dalgarno, S.J., Brechin, E.K., (2011) Chem. Commun., 47, p. 1440Bernot, K., Luzon, J., Sessoli, R., Vindigni, A., Thion, J., Richter, S., Leclercq, D., Van Der Lee, A., (2008) J. Am. Chem. Soc., 130, p. 1619Wang, Y., Parkin, S., Atwood, D., (2000) Chem. Commun., 19, p. 1799Svoboda, T., Jambor, R., Ruzicka, A., Padelkova, Z., Erben, M., Dostal, L., (2010) Eur. J. Inorg. Chem., p. 5222SĂĄ, G.F., Malta, O.L., DonegĂĄ, C.M., Simas, A.M., Longo, R.L., Santa-Cruz, P.A., JĂșnior, E.F.S., (2000) Coord. Chem. Rev., 196, p. 165Dutra, J.D.L., Freire, R.O., (2013) J. Photochem. Photobiol. A, 256, p. 29Malta, O.L., Silva, F.R.G., (1998) Spectrochim. Acta Part A, 54, p. 1593Malta, O.L., Silva, F.R.G., Longo, R., (1999) Chem. Phys. Lett., 307, p. 518Malta, O.L., (2008) J. Non-Cryst. Solids, 354, p. 477

    Structural Evolution In Crystalline Moo 3 Nanoparticles With Tunable Size

    No full text
    In this study MoO 3 nanoparticles were prepared in porous Vycor glass by impregnation-decomposition cycles (IDC) with molybdenum(VI) 2-ethylhexanoate. X-ray diffraction data show that the nanoparticles are crystalline and are in the orthorhombic α-MoO 3 phase. Raman spectroscopy data also indicate the formation of this phase. The profiles in the Raman spectra changed with the number of IDC, indicating a structural evolution of the MoO 3 nanoparticles. The IDC methodology promoted a linear mass increase and allowed tuning the nanoparticle size. Analysis of HRTEM images revealed that for 3, 5 and 7 IDC, the MoO 3 nanoparticle average diameters are 3.2, 3.6 and 4.2 nm. Diffuse reflectance spectroscopy indicates a consistent red shift in the band gap from 3.35 to 3.29 eV as the size increases from 3.2 to 4.2 nm. This observed red shift in the band gap of the MoO 3 nanoparticles is presumably due to quantum confinement effects. © 2012 Elsevier Inc.1908084Perkas, N., Amirian, G., Girshevitz, O., Charmet, J., Laux, E., Guinert, G., Keppner, H., Gedanken, A., (2011) Surf. Coat. Technol., 205, p. 3190Nair, A.S., Jose, R., Shengyuan, Y., Ramakrishna, S., (2011) J. Colloid Interface Sci., 353, p. 39Wang, Q., Pan, Y.Z., Huang, S.S., Ren, S.T., Li, P., Li, J.J., (2011) Nanotechnology, 22, p. 025501Xu, L., Song, H., Dong, B., Wang, Y., Chen, J., Bai, X., (2010) Inorg. Chem., 49, p. 10590Ressler, T., Walter, A., Huang, Z.-D., Bensch, W., (2008) J. Catal., 254, p. 170TomĂĄs, S.A., Arvizu, M.A., Zelaya-Angel, O., RodrĂ­guez, P., (2009) Thin Solid Films, 518, p. 1332Liu, J.X., Ando, Y., Dong, X.L., Shi, F., Yin, S., Adachi, K., Chonan, T., Sato, T., (2010) J. Solid State Chem., 183, p. 2456Sauvet, K., Sauques, L., Rougier, A., (2010) J. Phys. Chem. Solids, 71, p. 696Ahmad, M.I., Bhattacharya, S.S., (2009) Appl. Phys. Lett., 95, p. 191906Balaji, S., Djaoued, Y., Robichaud, J., (2006) J. Raman Spectrosc., 37, p. 1416Tsunekawa, S., Wang, J.T., Kawazoe, Y., (2006) J. Alloys Compd., 408, p. 1145Yang, C.C., Li, S., (2008) J. Phys. Chem. B, 112, p. 14193Elliot, R.J., (1957) Phys. Rev., 108, p. 1384Julien, C., Khelfa, A., Hussain, O.M., Nazri, J.A., (1995) J. Cryst. Growth, 156, p. 235Reverchon, E., Della Porta, G., Torino, E., Supercrit, J., (2010) Fluids, 53, p. 95Kim, W.S., Kim, H.C., Hong, S.H., (2010) J. Nanopart. Res., 12, p. 1889Parviz, D., Kazemeini, M., Rashidi, A.M., Jozani, K.J., (2010) J. Nanopart. Res., 12, p. 1509Khademi, A., Azimirad, R., Nien, Y.T., Moshfegh, A.Z., (2011) J. Nanopart. Res., 13, p. 115Li, S., Shao, C., Liu, Y., Tang, S., Mu, R., (2006) J. Phys. Chem. Solids, 67, p. 1869Dhanasankar, M., Purushothaman, K.K., Muralidharan, G., (2011) Appl. Surf. Sci., 257, p. 2074Dhanasankar, M., Purushothaman, K.K., Muralidharan, G., (2010) Solid State Sci., 12, p. 246Bouzidi, A., Benramdane, N., Tabet-Deraz, H., Mathieu, C., Khelifa, B., Desfeux, R., (2003) Mater. Sci. Eng. B, 97, p. 5Mazali, I.O., Souza Filho, A.G., Viana, B.C., Mendes Filho, J., Alves, O.L., (2006) J. Nanopart. Res., 8, p. 141Mazali, I.O., Viana, B.C., Alves, O.L., Mendes Filho, J., Filho, A.G.S., (2007) J. Phys. Chem. Solids, 68, p. 622Cangussu, D., Nunes, W.C., CorrĂȘa, H.L.S., MacEdo, W.A.A., Knobel, M., Alves, O.L., Souza Filho, A.G., Mazali, I.O., (2009) J. Appl. Phys., 105, p. 013901Alves, O.L., Ronconi, C.M., Galembeck, A., (2002) Quim. Nova, 25, p. 69Ronconi, C.M., Gonçalves, D., Suvorova, N., Alves, O.L., Irene, E.A., (2008) J. Phys. Chem. Solids, 70, p. 234CorrĂȘa, D.N., Souza Silva E, J.M., Santos, E.B., Sigoli, F.A., Souza Filho, A.G., Mazali, I.O., (2011) J. Phys. Chem. C, 115, p. 10380Zeng, H.C., (1998) J. Cryst. Growth, 186, p. 393Santos, E.B., Souza Silva E, J.M., Mazali, I.O., (2010) Mater. Res. Bull., 45, p. 1707Thielemann, J.P., Ressler, T., Walter, A., Muller, G.T., Hess, C., (2011) Appl. Catal., A, 399, p. 28Haus, J.W., Shou, H.S., Honma, I., Komiyama, H., (1993) Phys. Rev. B, 47, p. 1359Santos, E.B., Souza Silva E, J.M., Mazali, I.O., (2010) Vib. Spectrosc., 54, p. 54. , 89Williams, P., Norris, K., (2001) Near-Infrared Technology in the Agricultural and Food Industries, , American Association of Cereal Chemists Saint Paul, M

    Study Of Structure Of The Tio2-moo3 Bilayer Films By Raman Spectroscopy

    No full text
    In this work, TiO2-MoO3 films were easily prepared by dip-coating technique and metallo-organic decomposition process (MOD). Raman analyses indicate the formation of TiO2 in anatase phase and orthorhombic phase of α-MoO3. It was observed that the Raman bands intensities attributed to TiO2 and MoO3 oxides were dependent on the number of decomposition-deposition cycles (DDC). The different number of DDC generates films with different thicknesses and the Raman signal was sensitive to this variation. Raman analyses provided qualitative information about the bilayer structure of the bi-component TiO2-MoO3 films, which was confirmed by scanning electron microscopy. In this direction, the dip-coating technique and MOD process can be an efficient strategy to facile preparation of many samples to be used in applications. © 2014 Elsevier Ltd.60e242e246Lamic-Humblot, A.F., Barthe, P., Guzman, G., Delannoy, L., Louis, C., (2013) Thin Solid Films, 527, p. 96Zhao, Y., Yang, B., Xu, J., Fu, Z., Wu, M., Li, F., (2012) Thin Solid Films, 520, p. 3515MartĂ­nez, H.M., Torres, J., RodrĂ­guez-GarcĂ­a, M.E., Carreño, L.D.L., (2012) Phys. B Con. Matter, 407, p. 3199Hsu, C.S., Chan, C.C., Huang, H.T., Peng, C.H., Hsu, W.C., (2010) Thin Solid Films, 516, p. 4839Vomiero, A., Della Mea, D., Ferroni, M., Martinelli, G., Roncarati, G., Guidi, V., Comini, E., Sberveglieri, G., (2003) Mater. Sci. Eng. B, 101, p. 216Tucker, R.T., Beckers, N.A., Fleischauer, M.D., Brett, M.J., (2012) Thin Solid Films, 525, p. 28Khan, T.M., Mehmood, M.F., Mahmood, A., Shah, A., Raza, Q., Iqbal, A., Aziz, U., (2011) Thin Solid Films, 519, p. 5971Ronconi, C.M., Alves, O.L., Bruns, R.E., (2009) Thin Solid Films, 517, p. 2886Santos, E.B., Silva, J.M.S., Mazali, I.O., (2010) Vib. Spectrosc., 54, p. 89Santos, E.B., Sigoli, F.A., Mazali, I.O., (2012) J. Solid State Chem., 190, p. 80Li, Y., Galatsis, K., Wlodarski, W., Ghantasala, M., Russo, S., Gorman, J., Santucci, S., Passacantando, M., (2011) J. Vac. Sci. Technol. A, 19, p. 904Huang, Y., Li, D., Feng, J., Li, G., Zhang, Q., (2010) J. Sol-Gel Sci. Technol., 54, p. 276Al-Kandari, H., Al-Kharafi, F., Al-Awadi, N., El-Dusouqui, O.M., Katrib, A., (2006) J. Electron. Spectrosc. Relat. Phenom., 151, p. 128BarnabĂ©, A., Chapelle, A., Presmanes, L., Tailhades, P., (2013) J. Mater. Sci., 48, p. 3386Cole, I.S., Muster, T.H., Lau, D., Wright, N., Asmat, N.S., (2010) J. Electrochem. Soc., 157, p. 213CorrĂȘa, D.N., Silva, J.M.S., Santos, E.B., Sigoli, F.A., Souza Filho, A.G., Mazali, I.O., (2011) J. Phys. Chem. C, 115, p. 10380Ghimbeu, C.M., Lumbreras, M., Schoonman, J., Siadat, M., (2009) Sensors, 9, p. 9122Li, L., Mizuhata, M., Deki, S., (2005) Appl. Surf. Sci., 239, p. 292Mazali, I.O., Souza Filho, A.G., Viana Neto, B.C., Mendes Filho, J., Alves, O.L., (2006) J. Nanopart. Res., 8, p. 141Lee, Y.J., Seo, Y.I., Kim, S.H., Kim, D.G., Kim, Y.D., (2009) Appl. Phys. A - Mater., 97, p. 237Georgescu, D., Baia, L., Ersen, O., Baia, M., Simon, S., (2012) J. Raman Spectrosc., 43, p. 876Yao, D.D., Ou, J.Z., Latham, K., Zhuiykov, S., O'Mullane, A.P., Kalantar-Zadeh, K., (2012) Cryst. Growth Des., 12, p. 1865Atuchin, V.V., Gavrilova, T.A., Grigorieva, T.I., Kuratieva, N.V., Okotrub, K.A., Pervukhina, N.V., Surovtsev, N.V., (2011) J. Cryst. Growth, 318, p. 987Santos, E.B., Silva, J.M.S., Mazali, I.O., (2010) Mater. Res. Bull., 45, p. 1707He, T., Yao, J., (2006) Prog. Mater. Sci., 51, p. 810Huang, H., Chen, G., Wang, S., Kang, L., Lin, Z., Zhang, Y., (2014) Mater. Res. Bull., 51, p. 45

    Structural And Optical Properties Of Erbium And Ytterbium Codoped Germanoniobophosphate Glasses

    No full text
    A series of glasses with compositions of 20Na2O-30Nb 2O5-(5-y-z)Al2O3-30P 2O5-(15-x)TiO2-xGeO2-yEr 2O3-zYb2O3, where x = (0; 5; 10; 15), y = (0; 1), z = (0; 2) mol%, were investigated with respect to their structural, optical, and luminescence properties. The coordination of the germanium(IV) ion is normally reported as being mainly tetrahedral. However, results of this study suggest that the germanium(IV) ion may have an octahedral coordination and that TiO2 is substituted. This proposition can be done mainly by 31P MAS-NMR spectroscopy, which spectra show predominantly pyrophosphate chains in the different glasses, without changes in their polymerization after substitution. A similar coordination of germanium can also be identified by the photoluminescence behavior of the different codoped samples, which shows similar erbium(III) emission decay lifetimes (5 ms), and Judd-Ofelt intensity parameters. It was found that the upconversion emission process involved 1.5 photons. Regarding the thermal behavior, it is noted that the glasses containing higher proportions of GeO2 exhibit higher thermal stability and are therefore more resistant to devitrification when compared to compositions containing more TiO2. © 2014 The American Ceramic Society.97824622470Teixeira, Z., Alves, O.L., Mazali, I.O., Structure, Thermal Behavior, Chemical Durability, and Optical Properties of the Na2O-Al2O3-TiO2-Nb 2O5-P2O5 Glass System (2007) J. Am. Chem. Soc., 90 (1), pp. 256-263Bozelli, J.C., Nunes, L.A.O., Sigoli, F.A., Mazali, I.O., Erbium and Ytterbium Codoped Titanoniobophosphate Glasses for Ion-Exchange-Based Planar Waveguides (2010) J. Am. Ceram. Soc., 93 (9), pp. 2689-2692Subbalakshmi, P., Veeraiah, N., Study of CaO-WO3-P2O5 Glass System by Dielectric Properties, IR Spectra and Differential Thermal Analysis (2002) J. Non-Cryst. Solids, 298, pp. 89-98Hoppe, A., GĂŒldal, N.S., Boccaccini, A.R., A Review of the Biological Response to Ionic Dissolution Products from Bioactive Glasses and Glass-Ceramics (2011) Biomaterials, 32, pp. 2757-2774Bandeira, L.C., Ciuffi, K.J., Calefi, P.S., Nassar, E.J., Silva, J.V.L., Oliveira, M., Maia, I.A., Fernandes, M.H.V., Effect of Calcium Phosphate Coating on Polyamide Substrate for Biomaterial Applications (2012) J. Braz. Chem. Soc., 23 (5), pp. 810-817Knowles, J.C., Phosphate Based Glasses for Biomedical Applications (2003) J. Mater. Chem., 13 (10), pp. 2395-2401Sonawane, R., Apte, S., Naik, S., Raskar, D., Kale, B., Preparation and Optical Study of CdS Nanocrystals Embedded Phosphate Glass (2008) Mater. Res. Bull., 43 (3), pp. 618-624Al-Assir, M.S., Salem, S.A., El-Desoky, M.M., Effect of Iron Doping on the Characterization and Transport Properties of Calcium Phosphate Glassy Semiconductors (2006) J. Phys. Chem. Solids, 67 (8), pp. 1873-1881Salman, F.E., Shash, N.H., El-Haded, A., El-Mansy, M.K., Electrical Conduction and Dielectric Properties of Vanadium Phosphate Glasses Doped with Lithium (2002) J. Phys. Chem. Solids, 63 (11), pp. 1957-1966Chen, H., Tao, H., Zhao, X., Wu, Q., Fabrication and Ionic Conductivity of Amorphous Li-Al-Ti-P-O Thin Film (2011) J. Non-Cryst. Solids, 357, pp. 3267-3271Reddy, A.A., Babu, S.S., Pradeesh, K., Otton, C.J., Prakash, G.V., Optical Properties of Highly Er3+-Doped Sodium-Aluminium- Phosphate Glasses for Broadband 1.5 ÎŒm Emission (2011) J. Alloys Compd, 509, pp. 4047-4052Rivera-LĂ”pez, F., Babu, P., Jyothi, L., RodrĂ­guez-Mendoza, U., MartĂ­n, I., Jayasankar, C., LavĂ­n, V., Er3+- Yb3+ Co-Doped Phosphate Glasses Used for an Efficient 1.5 ÎŒm Broadband Gain Medium (2012) Opti. Mater., 34, pp. 1235-1240Zhou, J., Moshary, F., Gross, B.M., Arend, M.F., Ahmed, S.A., Population Dynamics of Yb3+, Er3+ Co-Doped Phosphate Glass (2004) J. Appl. Phys., 96 (1), pp. 237-241Brow, R.K., Review: The Structure of Simple Phosphate Glasses (2000) J. Non-Cryst. Solids, 263-264, pp. 1-28Amos, R.T., Henderson, G.S., The Effects of Alkali Cation Mass and Radii on the Density of Alkali Germanate and Alkali Germano-Phosphate Glasses (2003) J. Non-Cryst. Solids, 331, pp. 108-121Chu, C.M., Wu, J.J., Yung, S.W., Chin, T.S., Zhang, T., Wu, F.B., Optical and Structural Properties of Sr-Nb-Phosphate Glasses (2011) J. Non-Cryst. Solids, 357, pp. 939-945Obaton, A.-F., Labbe, C., Le Boulanger, P., Elouadi, B., Boulon, G., Excited State Absorption in Yb3+-Er3+-Co-Doped Phosphate Glasses (ZnO-Al2O3-La2O 3-P2O5) Around the 4I13/2 ?4I15/2 Emission Spectral Range (1997) Spectrochim. Acta, Part A, 55, pp. 263-271Hsu, S.M., Wu, J.J., Chin, T.S., Zhang, T., Lee, Y.M., Chu, C.M., Ding, J.Y., Evaluation of Chemical Durability, Thermal Properties and Structure Characteristics of Nb-Sr-Phosphate Glasses by Raman and NMR Spectroscopy (2012) J. Non-Cryst. Solids, 358, pp. 14-19Martinelli, J.R., Sene, F.F., Gomes, L., Synthesis and Properties of Niobium Barium Phosphate Glasses (2000) J. Non-Cryst. Solids, 263-264, pp. 263-270Ghussn, L., Prado, M.O., Russo, D.O., Martinelli, J.R., Crystallization of a Niobium Phosphate Glass (2006) J. Non-Cryst. Solids, 352, pp. 3391-3397Koudelka, L., PospĂ­ĆĄil, J., MoĆĄner, P., Montagne, L., Delevoye, L., Structure and Properties of Potassium Niobato-Borophosphate Glasses (2008) J. Non-Crust. Solids, 354, pp. 129-133Azzoni, C.B., Di Martino, D., Paleari, A., Almeida, R.M., Paramagnetic Sites in Alkali GermanateGglasses (2000) J. Non-Cryst. Solids, 278, pp. 19-23Kiczenski, T.J., Ma, C., Hammarsten, E., Wilkerson, D., Affatigato, M., Feller, S., A Study of Selected Physical Properties of Alkali GGermanat Glasses over Wide Ranges of Composition (2000) J. Non-Cryst. Solids, 272, pp. 57-66Hannon, A.C., Di Martino, D., Santos, L.F., Almeida, R.M., A Model for the Ge-O Coordination in Germanate Glasses (2007) J. Non-Cryst. Solids, 353, pp. 1688-1694Hoppe, U., Kranold, R., Weber, H.-J., Hannon, A.C., The Change of the Ge-O Coordination Number in Potassium Germanate Glasses Probed by Neutron Diffraction with High Real-Space Resolution (1999) J. Non-Cryst. Solids, 248, pp. 1-10Sahar, M.R., Hussein, A.W.M.A., Hussin, R., Structural Characteristic of Na2O-P2O 5-GeO2 Glass Systems (2007) J. Non-Cryst. Solids, 353, pp. 1134-1140Anan'Ev, A.V., Bogdanov, V.N., Champagnon, B., Ferrari, M., Karapetyan, G.O., Maksimov, L.V., Smerdin, S.N., Solovyev, V.A., Origin of Rayleigh Scattering and Anomaly of Elastic Properties in Vitreous and Molten GeO2 (2008) J. Non-Cryst. Solids, 354, pp. 3049-3058Sakaguchi, S., Todoroki, S., Rigout, N., Optical Properties in Ternary Germanate Glasses (1996) J. Non-Cryst. Solids, 196, pp. 58-62Sakaguchi, S., Todoroki, S., Optical Properties of GeO2 Glass and Optical Fibers (1997) Appl. Opt., 37 (27), pp. 6809-6814Ajroud, M., Haouari, M., Ouada, H.B., MĂąaref, H., Brenier, A., Champagnon, B., Energy Transfer Processes in (Er3+-Yb3+)-Co-Doped Germanate Glasses for Mid-Infrared and Upconversion Applications (2006) Mater. Sci. Eng., C, 26, pp. 523-529Lallier, E., Rare-Earth-Doped Glass and LiNbO3 Waveguide Lasers and Optical Amplifiers (1992) Appl. Opt., 31 (25), pp. 5276-5282Becker, P.C., Olsson, N.A., Simpson, J.R., (1999) Erbium-Doped Fiber Amplifiers: Fundamentals and Technology, , Academic Press, San Diego, CaliforniaZachariasen, W.H., The Atomic Arrangement in Glass (1932) J. Am. Chem. Soc., 54, pp. 3841-3851Montagne, L., Palavit, G., Delaval, R., Effect of ZnO on the Properties of (100-x)(NaPO3)-XZnO Glasses (1998) J. Non-Cryst. Solids, 223, pp. 43-47Walter, G., Vogel, J., Hoppe, U., Hartmann, P., The Structure of CaO-Na2O-MgO-P2O5 Invert Glass (2001) J. Non-Cryst. Solids, 296, pp. 212-223Mazali, I.O., Barbosa, L.C., Alves, O.L., Preparation and Characterization of New Niobophosphate Glasses in the Li2O-Nb2O5-CaO-P2O5 System (2004) J. Mater. Sci., 39, pp. 1987-1995Park, H.C., Lee, S.H., Ryu, B.K., Son, M.M., Lee, H.S., Yasui, I., Nucleation and Crystallization Kinetics of CaO-Al2O 3-2SiO2 in Powdered Anorthite Glass (1996) J. Mater. Sci., 31, pp. 4249-4253Sung, Y.-M., The Effect of Additives on the Crystallization and Sintering of 2MgO-2Al2O3-5SiO2 Glass-Ceramics (1996) J. Mater. Sci., 31, pp. 5421-5427Mahadevan, S., Giridhar, A., Singh, A.K., Calorimetric Measurments on As-Sb-Se Glasses (1986) J. Non-Cryst. Solids, 88, pp. 11-34Tiwari, B., Sudarsan, V., Dixit, A., Kothiyal, G.P., Effect of TiO2 Addition on the Optical, Thermo-Physical, and Structural Aspects of Sodium Alumino-Phosphate Glasses (2011) J. Am. Ceram. Soc., 94, pp. 1440-1446Shelby, J.E., (1997) Introduction to Glass Science and Technology, , 1. Royal Society of Chemistry, Cambridge, UKGrimes, N.W., Grimes, R.W., Dielectric Polarizability of Ions and the Corresponding Effective Number of Electrons (1998) J. Phys.: Condens. Matter, 10, pp. 3029-3034Prakash, G.V., Jagannathan, R., Rao, D.N., Physical and Optical Properties of NASICON-Type Phosphate Glasses (2002) Mater. Lett., 57, pp. 134-140Fletcher, J.P., Kirkpatrick, R.J., Howell, D., Risbud, S.H., 31P Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy of Calcium Phosphate Glasses (1993) J. Chem. Soc., Faraday Trans., 89 (17), pp. 3297-3299Montagne, L., Palavi, G., Mairesse, G., P-31 MAS NMR and FT IR Analysis of (50-x/2)Na2O.XBi 2O3.(50-x/2)P2O5 Glasses (1996) Phys. Chem. Glasses, 37, pp. 206-211Liu, Y., Shimizu, M., Wang, X., Zhu, B., Sakakura, M., Shimotsuma, Y., Qiu, J., Hirao, K., Confocal Raman Imaging of Femtosecond Laser Induced Microstructures in Germanate Glasses (2009) Chem. Phys. Lett., 477, pp. 122-125Henderson, G.S., Amos, R.T., The Structure of Alkali Germanophosphate Glasses by Raman Spectroscopy (2003) J. Non-Cryst. Solids, 328, pp. 1-19Sigaev, V.N., Lotarev, S.V., Sarkisov, P.D., Stefanovich, S.Y., Akimova, O.V., Champagnon, B., Vouagner, D., Fanelli, E., On Relationship of Atomic Structure, Nano-Sized Inhomogeneities and Second-Order Optical Non-Linearity of K2O-TiO2-P 2O5 Glasses (2006) J. Non-Cryst. Solids, 352, pp. 4142-4148Bomfim, F.A., Martinelli, J.R., Kassab, L.R.P., Assumpção, T.A.A., De AraĂșjo, C.B., Infrared-to-Visible Upconversion in Yb3+/Er3+ Co-Doped PbO-GeO2 Glass with Silver Nanoparticles (2010) J. Non-Cryst. Solids, 356, pp. 2598-2601Monteiro, J.H.S.K., Mazali, I.O., Sigoli, F.A., Determination of Judd-Ofelt Intensity Parameters of Pure Samarium(III) Complexes (2011) J. Fluoresc., 21, pp. 2237-2243Sigoli, F.A., Messaddeq, Y., Ribeiro, S.J.L., Erbium and Ytterbium Co-Doped SiO2:GeO2 Planar Waveguide Prepared by the Sol-Gel Route Using an Alternative Precursor (2008) J. Sol-Gel. Sci. Technol., 45, pp. 179-185Desirena, H., De La Rosa, E., DĂ­az-Torres, L.A., Kumar, G.A., Concentration Effect of Er3+ Ion on the Spectroscopic Properties of Er3+ and Yb3+/Er3+ Co-Doped Phosphate Glasses (2006) Opt. Mater., 28, pp. 560-568Jlassi, I., Elhouichet, H., Ferid, M., Barthou, C., Judd-Ofelt Analysis and Improvement of Thermal and Optical Properties of Tellurite Glasses by Adding P2O5 (2010) J. Lumin., 130, pp. 2394-2401Chen, G., Somesfalean, G., Liu, Y., Zhang, Z., Sun, Q., Wang, F., Upconversion Mechanism for Two-Color Emission in Rare-Earth-Ion-Doped ZrO2 Nanocrystals (2007) Phys. Rev. B, 75, p. 195204. , 6Li, Y., Wei, X., Yin, M., Synthesis and Upconversion Luminescent Properties of Er3+ Doped and Er3+-Yb3+ Codoped GdOCl Powders (2011) J. Alloys Compd, 509, pp. 9865-9868Sokolnicki, J., Upconversion Luminescence from Er3+ in Nanocrystalline Y 2Si2O7:Er3+ and Y2Si 2O7:Yb3+,Er3+ Phosphors (2011) Mater. Chem. Phys., 131, pp. 306-312Liu, L., Wang, Y., Zhang, X., Yang, K., Bai, Y., Huang, C., Han, W., Song, Y., Efficient Two-Color Luminescence of Er3+/Yb 3+/Li+:ZrO2 Nanocrystals (2011) Opt. Mater., 33, pp. 1234-1238Catunda, T., Nunes, L.A.O., Florez, A., Messaddeq, Y., Aegerter, M.A., Spectroscopic Properties and Upconversion Mechanisms in Er 3+-Doped Fluoroindate Glasses (1996) Phys. Rev. B, 53, pp. 6065-6070Reddy, B.R., Venkateswarlu, P., Infrared to Visible Energy Uconversion in Er3+ Doped Oxide Glass (1994) Appl. Phys. Lett., 64, pp. 1327-1329Speghini, A., Francini, R., Martinez, A., Tavernese, M., Bettinelli, M., Spectroscopic Properties of Er3+, Yb3+ and Er 3+/Yb3+ Doped Metaphosphate Glasses (2001) Spectrochim. Acta A, 57, pp. 2001-2008Sardar, D.K., Gruber, J.B., Zandi, B., Hutchinson, J.A., Trussell, C.W., Judd-Ofelt Analysis of the Er3+(4f11) Absorption Intensities in Phosphate Glass: Er3+, Yb3+ (2003) J. Appl. Phys., 93 (4), pp. 2041-2046Yu, X., Song, F., Wang, W., Luo, L., Han, L., Cheng, Z., Sun, T., Pun, E.Y.B., Comparison of Optical Parameters and Luminescence between Er 3+/Yb3+ Codoped Phosphate Glass Ceramics and Precursor Glasses (2008) J. Appl. Phys., 104, p. 113105. , 6Yu, X., Duan, L., Ni, L., Wang, Z., Fabrication and Luminescence Behavior of Phosphate Glass Ceramics Co-Doped with Er3+ and Yb3+ (2012) Opt. Commun., 285, pp. 3805-380
    corecore