416 research outputs found

    Immunoscintigraphy for therapy decision making and follow-up of biological therapies

    Get PDF
    With the availability of new biological therapies there is the need of more accurate diagnostic tools to noninvasively assess the presence of their targets. In this scenario nuclear medicine offers many radiopharmaceuticals for SPECT or PET imaging of many pathological conditions. The availability of monoclonal antibodies provides tools to target specific antigens involved in angiogenesis, cell cycle or modulation of the immune systems. The radiolabelling of such therapeutic mAbs is a promising method to evaluate the antigenic status of each cancer lesion or inflamed sites before starting the therapy. It may also allow to perform follow-up of such biological therapies. In the present review we provide an overview of the most studied radiolabelled antibodies for therapy decision making and follow-up of patients affected by cancer and other pathological conditions

    Radiolabelled cytokines for imaging chronic inflammation

    Get PDF
    Diagnosis and particularly follow-up of chronic inflammatory disorders could be often difficult in clinical practice. Indeed, traditional radiological techniques reveal only structural tissue alterations and are not able to monitor functional changes occurring in tissues affected by chronic inflammation. The continuous advances in the knowledge of the pathophysioloy of chronic disorders, combined with the progress of radiochemistry, led to the development of new specific radiolabelled agents for the imaging of chronic diseases. In this scenario, cytokines, due to their pivotal role in such diseases, represent good candidates as radiopharmaceuticals

    Methods for radiolabeling nanoparticles (Part 3): therapeutic use

    Get PDF
    : Following previously published systematic reviews on the diagnostic use of nanoparticles (NPs), in this manuscript, we report published methods for radiolabeling nanoparticles with therapeutic alpha-emitting, beta-emitting, or Auger's electron-emitting isotopes. After analyzing 234 papers, we found that different methods were used with the same isotope and the same type of nanoparticle. The most common type of nanoparticles used are the PLGA and PAMAM nanoparticles, and the most commonly used therapeutic isotope is 177Lu. Regarding labeling methods, the direct encapsulation of the isotope resulted in the most reliable and reproducible technique. Radiolabeled nanoparticles show promising results in metastatic breast and lung cancer, although this field of research needs more clinical studies, mainly on the comparison of nanoparticles with chemotherapy

    Diabetic Foot Infections:The Diagnostic Challenges

    Get PDF
    Diabetic foot infections (DFIs) are severe complications of long-standing diabetes, and they represent a diagnostic challenge, since the differentiation between osteomyelitis (OM), soft tissue infection (STI), and Charcot's osteoarthropathy is very difficult to achieve. Nevertheless, such differential diagnosis is mandatory in order to plan the most appropriate treatment for the patient. The isolation of the pathogen from bone or soft tissues is still the gold standard for diagnosis; however, it would be desirable to have a non-invasive test that is able to detect, localize, and evaluate the extent of the infection with high accuracy. A multidisciplinary approach is the key for the correct management of diabetic patients dealing with infective complications, but at the moment, no definite diagnostic flow charts still exist. This review aims at providing an overview on multimodality imaging for the diagnosis of DFI and to address evidence-based answers to the clinicians when they appeal to radiologists or nuclear medicine (NM) physicians for studying their patients

    Immune cell labelling and tracking. implications for adoptive cell transfer therapies

    Get PDF
    BACKGROUND: The understanding of the role of different immune cell subsets that infiltrate tumors can help researchers in developing new targeted immunotherapies to reactivate or reprogram them against cancer. In addition to conventional drugs, new cell-based therapies, like adoptive cell transfer, proved to be successful in humans. Indeed, after the approval of anti-CD19 CAR-T cell therapy, researchers are trying to extend this approach to other cancer or cell types.MAIN BODY: This review focuses on the different approaches to non-invasively monitor the biodistribution, trafficking and fate of immune therapeutic cells, evaluating their efficacy at preclinical and clinical stages. PubMed and Scopus databases were searched for published articles on the imaging of cell tracking in humans and preclinical models.CONCLUSION: Labelling specific immune cell subtypes with specific radiopharmaceuticals, contrast agents or optical probes can elucidate new biological mechanisms or predict therapeutic outcome of adoptive cell transfer therapies. To date, no technique is considered the gold standard to image immune cells in adoptive cell transfer therapies
    • …
    corecore