1,829 research outputs found
Structural phase transitions in epitaxial perovskite films
Three different film systems have been systematically investigated to
understand the effects of strain and substrate constraint on the phase
transitions of perovskite films. In SrTiO films, the phase transition
temperature T was determined by monitoring the superlattice peaks
associated with rotations of TiO octahedra. It is found that T depends
on both SrTiO film thickness and SrRuO buffer layer thickness. However,
lattice parameter measurements showed no sign of the phase transitions,
indicating that the tetragonality of the SrTiO unit cells was no longer a
good order parameter. This signals a change in the nature of this phase
transition, the internal degree of freedom is decoupled from the external
degree of freedom. The phase transitions occur even without lattice relaxation
through domain formation. In NdNiO thin films, it is found that the
in-plane lattice parameters were clamped by the substrate, while out-of-plane
lattice constant varied to accommodate the volume change across the phase
transition. This shows that substrate constraint is an important parameter for
epitaxial film systems, and is responsible for the suppression of external
structural change in SrTiO and NdNiO films. However, in SrRuO films
we observed domain formation at elevated temperature through x-ray reciprocal
space mapping. This indicated that internal strain energy within films also
played an important role, and may dominate in some film systems. The final
strain states within epitaxial films were the result of competition between
multiple mechanisms and may not be described by a single parameter.Comment: REVTeX4, 14 figure
"Of Mice and Measures": A Project to Improve How We Advance Duchenne Muscular Dystrophy Therapies to the Clinic
A new line of dystrophic mdx mice on the DBA/2J (D2) background has emerged as a candidate to study the efficacy of therapeutic approaches for Duchenne muscular dystrophy (DMD). These mice harbor genetic polymorphisms that appear to increase the severity of the dystropathology, with disease modifiers that also occur in DMD patients, making them attractive for efficacy studies and drug development. This workshop aimed at collecting and consolidating available data on the pathological features and the natural history of these new D2/mdx mice, for comparison with classic mdx mice and controls, and to identify gaps in information and their potential value. The overall aim is to establish guidance on how to best use the D2/mdx mouse model in preclinical studies
Doping and temperature dependence of incommensurate antiferromagnetism in underdoped lanthanum cuprates
The doping, temperature and energy dependence of the dynamical spin structure
factors of the underdoped lanthanum cuprates in the normal state is studied
within the t-J model using the fermion-spin transformation technique.
Incommensurate peaks are found at ,
at relatively low temperatures with linearly
increasing with doping at the beginning and then saturating at higher dopings.
These peaks broaden and weaken in amplitude with temperature and energy, in
good agreement with experiments. The theory also predicts a rotation of these
peaks by at even higher temperatures, being shifted to .Comment: 11 pages, PDF file, six figures are included, accepted for
publication in Physical Review
Influence of next-nearest-neighbor electron hopping on the static and dynamical properties of the 2D Hubbard model
Comparing experimental data for high temperature cuprate superconductors with
numerical results for electronic models, it is becoming apparent that a hopping
along the plaquette diagonals has to be included to obtain a quantitative
agreement. According to recent estimations the value of the diagonal hopping
appears to be material dependent. However, the values for discussed
in the literature were obtained comparing theoretical results in the weak
coupling limit with experimental photoemission data and band structure
calculations. The goal of this paper is to study how gets renormalized as
the interaction between electrons, , increases. For this purpose, the effect
of adding a bare diagonal hopping to the fully interacting two dimensional
Hubbard model Hamiltonian is investigated using numerical techniques. Positive
and negative values of are analyzed. Spin-spin correlations, ,
vs , and local magnetic moments are studied for values
of ranging from 0 to 6, and as a function of the electronic density. The
influence of the diagonal hopping in the spectral function
is also discussed, and the changes in the gap present in the density of states
at half-filling are studied. We introduce a new criterion to determine probable
locations of Fermi surfaces at zero temperature from data obtained
at finite temperature. It appears that hole pockets at
may be induced for negative while a positive produces similar
features at and . Comparisons with the standard 2D
Hubbard () model indicate that a negative hopping amplitude appears
to be dynamically generated. In general, we conclude that it is very dangerous
to extract a bare parameter of the Hamiltonian from PES data whereComment: 9 pages (RevTex 3.0), 12 figures (postscript), files packed with
uufile
Y chromosome evidence of earliest modern human settlement in East Asia and multiple origins of Tibetan and Japanese populations
<p>Abstract</p> <p>Background</p> <p>The phylogeography of the Y chromosome in Asia previously suggested that modern humans of African origin initially settled in mainland southern East Asia, and about 25,000–30,000 years ago, migrated northward, spreading throughout East Asia. However, the fragmented distribution of one East Asian specific Y chromosome lineage (D-M174), which is found at high frequencies only in Tibet, Japan and the Andaman Islands, is inconsistent with this scenario.</p> <p>Results</p> <p>In this study, we collected more than 5,000 male samples from 73 East Asian populations and reconstructed the phylogeography of the D-M174 lineage. Our results suggest that D-M174 represents an extremely ancient lineage of modern humans in East Asia, and a deep divergence was observed between northern and southern populations.</p> <p>Conclusion</p> <p>We proposed that D-M174 has a southern origin and its northward expansion occurred about 60,000 years ago, predating the northward migration of other major East Asian lineages. The Neolithic expansion of Han culture and the last glacial maximum are likely the key factors leading to the current relic distribution of D-M174 in East Asia. The Tibetan and Japanese populations are the admixture of two ancient populations represented by two major East Asian specific Y chromosome lineages, the O and D haplogroups.</p
Neutron Scattering Study of Spin Density Wave Order in the Superconducting State of Excess-Oxygen-Doped La2CuO4+y
We report neutron scattering measurements of spin density wave order within
the superconducting state of a single crystal of predominately stage-4
La2CuO4+y with a Tc(onset) of 42 K. The low temperature elastic magnetic
scattering is incommensurate with the lattice and is characterized by
long-range order in the copper-oxide plane with the spin direction identical to
that in the insulator. Between neighboring planes, the spins exhibit
short-range correlations with a stacking arrangement reminiscent of that in the
undoped antiferromagnetic insulator. The elastic magnetic peak intensity
appears at the same temperature within the errors as the superconductivity,
suggesting that the two phenomena are strongly correlated. These observations
directly reveal the persistent influence of the antiferromagnetic order as the
doping level increases from the insulator to the superconductor. In addition,
our results confirm that spin density wave order for incommensurabilities near
1/8 is a robust feature of the La2CuO4-based superconductors.Comment: 14 pages, LaTeX, includes 8 figure
Crossover and scaling in a nearly antiferromagnetic Fermi liquid in two dimensions
We consider two-dimensional Fermi liquids in the vicinity of a quantum
transition to a phase with commensurate, antiferromagnetic long-range order.
Depending upon the Fermi surface topology, mean-field spin-density-wave theory
predicts two different types of such transitions, with mean-field dynamic
critical exponents (when the Fermi surface does not cross the magnetic
zone boundary, type ) and (when the Fermi surface crosses the magnetic
zone boundary, type ). The type system only displays behavior at
all energies and its scaling properties are similar (though not identical) to
those of an insulating Heisenberg antiferromagnet. Under suitable conditions
precisely stated in this paper, the type system displays a crossover from
relaxational behavior at low energies to type behavior at high energies. A
scaling hypothesis is proposed to describe this crossover: we postulate a
universal scaling function which determines the entire, temperature-,
wavevector-, and frequency-dependent, dynamic, staggered spin susceptibility in
terms of 4 measurable, , parameters (determining the distance, energy, and
order parameter scales, plus one crossover parameter). The scaling function
contains the full scaling behavior in all regimes for both type and
systems. The crossover behavior of the uniform susceptibility and the specific
heat is somewhat more complicated and is also discussed. Explicit computation
of the crossover functions is carried out in a large expansion on a
mean-field model. Some new results for the critical properties on the ordered
side of the transition are also obtained in a spin-density wave formalism. The
possible relevance of our results to the doped cuprate compounds is briefly
discussed.Comment: 20 pages, REVTeX, 6 figures (uuencoded compressed PostScript file for
figures is appended
Stripes, Pseudogaps, and Van Hove Nesting in the Three-band tJ Model
Slave boson calculations have been carried out in the three-band tJ model for
the high-T_c cuprates, with the inclusion of coupling to oxygen breathing mode
phonons. Phonon-induced Van Hove nesting leads to a phase separation between a
hole-doped domain and a (magnetic) domain near half filling, with long-range
Coulomb forces limiting the separation to a nanoscopic scale. Strong
correlation effects pin the Fermi level close to, but not precisely at the Van
Hove singularity (VHS), which can enhance the tendency to phase separation. The
resulting dispersions have been calculated, both in the uniform phases and in
the phase separated regime. In the latter case, distinctly different
dispersions are found for large, random domains and for regular (static)
striped arrays, and a hypothetical form is presented for dynamic striped
arrays. The doping dependence of the latter is found to provide an excellent
description of photoemission and thermodynamic experiments on pseudogap
formation in underdoped cuprates. In particular, the multiplicity of observed
gaps is explained as a combination of flux phase plus charge density wave (CDW)
gaps along with a superconducting gap. The largest gap is associated with VHS
nesting. The apparent smooth evolution of this gap with doping masks a
crossover from CDW-like effects near optimal doping to magnetic effects (flux
phase) near half filling. A crossover from large Fermi surface to hole pockets
with increased underdoping is found. In the weakly overdoped regime, the CDW
undergoes a quantum phase transition (), which could be obscured
by phase separation.Comment: 15 pages, Latex, 18 PS figures Corrects a sign error: major changes,
esp. in Sect. 3, Figs 1-4,6 replace
A Successful Primary Percutaneous Coronary Intervention Twelve Days After a Cabrol Composite Graft Operation in Marfan Syndrome
The Cabrol procedure is one of several techniques used for re-implantation of a coronary artery. After replacement of the ascending aorta and aortic valve using a composite graft, second Dacron tube grafts are used for anastomosis between the ascending aortic graft and the coronary arteries. Ostial stenosis is one of the complications associated with the Cabrol operation. However, there have been no reported cases of acute thrombosis of a Cabrol graft. Here we report a case with acute ST elevation myocardial infarction due to thrombotic total occlusion of a right Cabrol graft-to-right coronary artery (RCA) twelve days after surgery in a patient with Marfan syndrome. He was successfully treated with primary percutaneous coronary intervention (PCI)
Commensurate dynamic magnetic correlations in La2(Cu,Li)O4
When sufficient numbers of holes are introduced into the two-dimensional CuO2
square lattice, dynamic magnetic correlations become incommensurate with
underlying lattice in all previously investigated La_{2-x}A_xCu_{1-z}B_zO_{4+y}
(A=Sr or Nd, B=Zn) including high T_C superconductors and insulators, and in
bilayered superconducting YBa_2Cu_3O_{6.6} and Bi_2Sr_2CaCu_2O_8. Magnetic
correlations also become incommensurate in structurally related La_2NiO_4 when
doped with Sr or O. We report an exception to this so-far well established
experimental "rule" in La_2Cu_{1-z}Li_{z}O_4 in which magnetic correlations
remain commensurate.Comment: 4 pages, 3 figures, revised version as for publicatio
- …