4,664 research outputs found

    Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data

    Full text link
    The conventional CNN, widely used for two-dimensional images, however, is not directly applicable to non-regular geometric surface, such as a cortical thickness. We propose Geometric CNN (gCNN) that deals with data representation over a spherical surface and renders pattern recognition in a multi-shell mesh structure. The classification accuracy for sex was significantly higher than that of SVM and image based CNN. It only uses MRI thickness data to classify gender but this method can expand to classify disease from other MRI or fMRI dataComment: 29 page

    Load Adaptive Modulation to Heat Non-Ferromagnetic Material

    Get PDF
    Department of Electrical EngineeringInduction heating (IH) cooktops are popular to heat various vessels fast and safely in the kitchen. Conventional IH cooktop system have been developed to heat the vessel of ferromagnetic materials. Because the vessel of non-ferromagnetic materials has low-resistance which induces large resonant current to power switches in series resonant IH inverters. Hence, the rated power cannot be transferred to the vessel due to overcurrent which is higher the rated switch current. In this thesis, a load adaptive modulation (LAM) method is proposed to heat the vessel of non-ferromagnetic and ferromagnetic materials in a single IH burner. The LAM can change the magnitude of the input voltage of the IH working coil and the operating frequency induced to the IH working coil according to the resistance of the vessel. The operational principle and the design method are analyzed to implement the proposed LAM and its power control. The validity of the design method and the control algorithm is experimentally verified using a 2 kW prototype series resonant full-bridge inverter with the IH working coil.ope

    A simple physical model for scaling in protein-protein interaction networks

    Full text link
    It has recently been demonstrated that many biological networks exhibit a scale-free topology where the probability of observing a node with a certain number of edges (k) follows a power law: i.e. p(k) ~ k^-g. This observation has been reproduced by evolutionary models. Here we consider the network of protein-protein interactions and demonstrate that two published independent measurements of these interactions produce graphs that are only weakly correlated with one another despite their strikingly similar topology. We then propose a physical model based on the fundamental principle that (de)solvation is a major physical factor in protein-protein interactions. This model reproduces not only the scale-free nature of such graphs but also a number of higher-order correlations in these networks. A key support of the model is provided by the discovery of a significant correlation between number of interactions made by a protein and the fraction of hydrophobic residues on its surface. The model presented in this paper represents the first physical model for experimentally determined protein-protein interactions that comprehensively reproduces the topological features of interaction networks. These results have profound implications for understanding not only protein-protein interactions but also other types of scale-free networks.Comment: 50 pages, 17 figure

    Geometric Convolutional Neural Network for Analyzing Surface-Based Neuroimaging Data

    Get PDF
    In machine learning, one of the most popular deep learning methods is the convolutional neural network (CNN), which utilizes shared local filters and hierarchical information processing analogous to the brainā€™s visual system. Despite its popularity in recognizing two-dimensional (2D) images, the conventional CNN is not directly applicable to semi-regular geometric mesh surfaces, on which the cerebral cortex is often represented. In order to apply the CNN to surface-based brain research, we propose a geometric CNN (gCNN) that deals with data representation on a mesh surface and renders pattern recognition in a multi-shell mesh structure. To make it compatible with the conventional CNN toolbox, the gCNN includes data sampling over the surface, and a data reshaping method for the convolution and pooling layers. We evaluated the performance of the gCNN in sex classification using cortical thickness maps of both hemispheres from the Human Connectome Project (HCP). The classification accuracy of the gCNN was significantly higher than those of a support vector machine (SVM) and a 2D CNN for thickness maps generated by a map projection. The gCNN also demonstrated position invariance of local features, which rendered reuse of its pre-trained model for applications other than that for which the model was trained without significant distortion in the final outcome. The superior performance of the gCNN is attributable to CNN properties stemming from its brain-like architecture, and its surface-based representation of cortical information. The gCNN provides much-needed access to surface-based machine learning, which can be used in both scientific investigations and clinical applications

    Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

    Get PDF
    Objective Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2) gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7) cells during muscle differentiation. Results Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO) QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth

    Efficient transgene expression system using a cumate-inducible promoter and Cre-loxP recombination in avian cells

    Get PDF
    Objective Transgenic technology is widely used for industrial applications and basic research. Systems that allow for genetic modification play a crucial role in biotechnology for a number of purposes, including the functional analysis of specific genes and the production of exogenous proteins. In this study, we examined and verified the cumate-inducible transgene expression system in chicken DF1 and quail QM7 cells, as well as loxP element-mediated transgene recombination using Cre recombinase in DF1 cells. Methods After stable transfer of the transgene with piggyBac transposon and transposase, transgene expression was induced by an appropriate concentration of cumate. Additionally, we showed that the transgene can be replaced with additional transgenes by co-transfection with the Cre recombinase expression vector. Results In the cumate-GFP DF1 and QM7 cells, green fluorescent protein (GFP) expression was repressed in the off state in the absence of cumate, and the GFP transgene expression was successfully induced in the presence of cumate. In the cumate-MyoD DF1 cells, MyoD transgene expression was induced by cumate, and the genes controlled by MyoD were upregulated according to the number of days in culture. Additionally, for the translocation experiments, a stable enhanced green fluorescent protein (eGFP)-expressing DF1 cell line transfected with the loxP66-eGFP-loxP71 vector was established, and DsRed-positive and eGFP-negative cells were observed after 14 days of co-transfection with the DsRed transgene and Cre recombinase indicating that the eGFP transgene was excised, and the DsRed transgene was replaced by Cre recombination. Conclusion Transgene induction or replacement cassette systems in avian cells can be applied in functional genomics studies of specific genes and adapted further for efficient generation of transgenic poultry to modulate target gene expression

    Appropriateness of transport of children via emergency medical service providers according to the decision-maker on referred hospitals

    Get PDF
    Purpose We aimed to investigate the appropriateness of transport of children via emergency medical service providers (EMSP) according to the decision-maker on referred hospitals (EMSP [EMSP group] vs. guardians [user group]). Methods We analyzed first aid records by EMSP for children aged 15 years or younger in Gyeonggi province, Korea, from January 2012 through December 2013. We obtained the following data: scene, symptom, type (high-level [regional/local emergency medical centers] or not) and location (out-of-province or not) of referred hospitals, injury, level of consciousness (alert or not), and prehospital triage results by EMSP (emergent/less emergent or not). Results A total of 50,407 children were included, of whom 37,626 (74.6%) belonged to the user group. Overall, the most common scene, symptom, and type and location of referred hospitals were home (57.0%), pain (33.3%), and inside-the-province and local emergency medical centers (44.2%), respectively. The user group showed less frequent injury (P < 0.001), decreased level of consciousness (P < 0.001), and no significant difference in the triage results (P = 0.074). This group showed more frequent transport to high-level and out-of-province emergency medical centers (P < 0.001), and longer transport (P < 0.001). Conclusion The user group showed more frequent transport to high-level or remote referred hospitals without more critical prehospital triage results. Guardian-directed transport of children might be associated with the inappropriate transport of children via EMSP
    • ā€¦
    corecore