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Abstract 

Induction heating (IH) cooktops are popular to heat various vessels fast and safely in the 

kitchen. Conventional IH cooktop system have been developed to heat the vessel of ferromagnetic 

materials. Because the vessel of non-ferromagnetic materials has low-resistance which induces 

large resonant current to power switches in series resonant IH inverters. Hence, the rated power 

cannot be transferred to the vessel due to overcurrent which is higher the rated switch current. In 

this thesis, a load adaptive modulation (LAM) method is proposed to heat the vessel of non-

ferromagnetic and ferromagnetic materials in a single IH burner. The LAM can change the 

magnitude of the input voltage of the IH working coil and the operating frequency induced to the 

IH working coil according to the resistance of the vessel. The operational principle and the design 

method are analyzed to implement the proposed LAM and its power control. The validity of the 

design method and the control algorithm is experimentally verified using a 2 kW prototype series 

resonant full-bridge inverter with the IH working coil. 
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Ⅰ. Introduction 
 

The traditional concept of gas stove is the most popular in the market. In recent years, induction 

cooktop has become increasingly popular. Induction cooktop not only offers a faster heating 

performance compared to the traditional solutions (Gas and electric stoves), but also offers cleanness, 

safety and high efficiency [1-3]. Some of these advantages derive from the fact that the heating is 

directly generated in the vessel, unlike the traditional contact-heating solutions. For this reason, the high 

efficiency of the induction cooktop has been paid attention of researchers devoted to highly efficient 

power electronic systems. The principle of induction heating is to create a high frequency current which 

induce a magnetic flux. This magnetic flux produces eddy current which induce joule heating into the 

vessel. The generated heat is due to the eddy currents induced in the bottom layer of vessel combined 

with the hysteresis losses from the vessel. 

The conceptual diagram of the conventional induction cooktop is shown in Fig. 1. The conventional 

induction cooktop has a diode rectifier, a resonant network connected in series, a bridge circuit and a 

working coil. The half-bridge SRC is used due to its simple structure and its cost-effectiveness. The 

planar type IH working coil and the vessel is approximated by a transformer model [4-6]. Fig. 2 shows 

the transformer model as a load model of induction cooktop. The equivalent load resistance consists of 

the IH working coil and the series connected resistance of vessel. Therefore, the primary-side switch 

current is inversely proportional to the resistance of the vessel. For this reason, the conventional 

induction cooktop has been developed to heat the ferromagnetic materials which have high resistance 

to reduce the primary switch current. The high resistance material is mostly a ferromagnetic material 

which have high permeability and resistivity. The ferromagnetic material has low skin-depth which is 

induced by high resistivity and permeability. However, the vessel made of the non-ferromagnetic 

materials such as aluminum and copper induce the high primary switch current in induction cooktop 

and fail to deliver proper transfer power to the vessel due to overcurrent protection (OVP). This becomes 

a problem in that a significant portion of the vessels on the market are currently made of aluminum and 

copper as it offers low manufacturing cost. The heating capability for various materials is the most 

important to improve the functionality and the usability of the induction cooktop. 

To overcome this problem, the very few non-ferromagnetic material-compatible induction cooktops 

called all-metal IH are proposed on the market. A common concept for all-metal IH technology is to 

increase the operating frequency applied into the IH working coil [7-9]. It is based on the skin-depth 

effect. Skin depth is normally expressed as δ = 1/√𝑓𝜋𝜇𝜎, where 𝑓 is the operating frequency, 𝜇 is 

the permeability of the conducting material, 𝜎 is the conductivity of the conducting material. Therefore, 

when the operating frequency applied to the IH working coil increases, skin depth decreases and a high 

equivalent load resistance is obtained to reduce the primary switch current. 
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Fig. 1. Concept block diagram of induction cooktop 

 

Fig. 2. Equivalent load model of an induction cooktop 

 

As part of this method, the THM method is proposed [10]. In THM method, the operating frequency 

induced to the IH coil is three times higher the switching frequency by designing resonant network 

which have the tripled resonant frequency compared with the switching frequency [11-12]. Fig. 3 shows 

experimental results of THM. Fig. 4 shows circuit of THM resonant inverter. In the THM method, 

resonant network is designed at the resonant frequency which is three times higher the switching 

frequency. Therefore, the voltage gain of the resonant network is reduced to about 1/3 by removing 

other harmonic components. Although the load equivalent load resistance is sufficiently high, active 

PFC is needed to compensate for the lowered voltage gain. THM method not only increases the unit 

cost of the product, it is also an inefficient method. 

Another all-metal IH technology is a HFO method [13]. It simply increases the equivalent load 

resistance by increasing the switching frequency to 100 kHz. Therefore, it causes the low Power 

efficiency due to high switching losses. To compensate this demerit, SiC devices is adopted in the HFO 

method. The SiC metal oxide semiconductor field effect transistor (MOSFET) has low on-resistance, 

high-breakdown voltage compared to MOSFET and high heat conductivity. SiC MOSFET dramatically 

decrease the switching losses. However, the unit cost increases. In addition, since the area of the package 

must be widened to cool the heat of the high frequency  
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Fig. 3. Experimental results of THM   

 

Fig. 4. Circuit of THM resonant inverter  

 

 

Fig. 5. Switching device according to package type 

 

switching operation. Therefore, thermal analysis is required to select the package type for SiC device. 

It is necessary to analyze the loss by calculating the thermal resistance of the insulating pater and the 

thermal grease considering the area contacted with the heat sink according to SiC MOSFET package 

type [14]. Fig. 5 shows switching device according to package type. To cool the heat generated by high-

frequency switching of the SiC, a switch package having a large heat-contact area such as SOT-227 

shown in the figure 5 should be selected. The selected device SOT-227 package has higher unit costs 

than typical TO-247 or TO-264 packages. Therefore, the all-metal IH technology proposed to date has 

a disadvantage of high cost. 
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Fig. 6. Circuit diagram of LAM IH inverter 

 

In this thesis, the LAM which implements all-metal IH technology in a full-bridge structure using 

MOSFET is proposed. Fig. 6 shows Circuit diagram of LAM IH inverter. The LAM has four modulation 

modes which can control the input voltage and the operating frequency induced the IH working coil. 

The various modulation modes can properly control the magnitude of the primary switch current 

according to the material of vessel. The inverter which implements proposed method has no input 

voltage drop because it not uses the high order operation. Therefore, PFC circuit is not necessary for 

LAM to boost up the effective input voltage, which will be cost-effective and will improve power 

density. The operational principles and the practical design methodology will be briefly introduced in 

Section 4.1. Also, the proposed algorithm is analyzed in Section 4.2. In Section 4.3, the proposed control 

algorithm will be verified by using simulation and experimental results. Finally, the conclusion, the 

summary, and the future plan of this thesis will be presented in last three chapters. 
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Fig. 7. Circuit diagram of half bridge SRC 

 

 

Fig. 8. Voltage gain and impedance characteristics of SRC (SRC) 

 

Ⅱ. Theoretical analysis of series resonant inverter for induction cooktop 
 

In the IH converter, a SRC is widely used. The resonant converter improves efficiency by generating 

sinusoidal switching waveforms instead of the commonly used square waveforms. The sinusoidal 

waveform offers that the total harmonic distortion and electromagnetic interference (EMI) will be 

reduced. And the resonant converter enables the Zero Voltage Switching (ZVS). With ZVS operation, 

the switch in the resonant converter is turned on when the voltage across it is zero, thus switching losses 

are minimized [15-20]. 

Fig. 7 shows circuit diagram of the half-bridge SRC (SRC). SRC has a series L-C resonant network 

serving as a major part in power conversion process. The resonant network consists of a resonant 

capacitor Cr and a resonant inductor Lr connected in series. The equivalent load resistance which is the 

equivalent load resistance of vessel in IH converter is in series with the resonant network and impedance 

of the resonant network Zr is a function of the resonant frequency and switching frequency. Detailed 

theoretical analysis of the SRC is described in Section 2.1. and Section 2.2. Fig. 8 shows the voltage 

gain and impedance characteristics of SRC. At resonant frequency 𝑓𝑟 = 1/(2𝜋√𝐿𝑟𝐶𝑟), the impedance 

of the resonant network reaches its minimum (Zr = 0). Therefore, the voltage gain of the resonant 

network reaches its maximum (Gv = 1). The SRC can control the voltage gain of the resonant network 
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Fig. 9. Simplified circuit model of SRC for induction cooktop 

 

Fig. 10. Equivalent circuit of resonant network 

 

by adjusting the normalized frequency (fn = fr/fs) which is a function of the resonant frequency and the 

switching frequency ratio and can control the output power. In this section, the operational principle of 

SRC for induction cooktop is introduced briefly and the practical design methodology considering IH 

load characteristics. 

 

2.1 Equivalent load resistance range for heating a desired power 
 

The simplified circuit model of SRC for induction cooktop is shown in Fig.9. Fig. 9 is the circuit 

which is combined with Fig. 3 and Fig.6. The load model of the SRC for the induction cooktop is 

approximated by a transformer model which consist of the IH working coil on the primary side and the 

vessel on the secondary side. Fig. 10. shows equivalent circuit of resonant network. It has the input 

voltage, the equivalent load resistance in primary side, and the resonant network which is two 

combinations of the resonant inductance and the resonant capacitor. This model is used to derive the 

load characteristics, the resonant network voltage gain, and resonant current. The derived equations are 

expressed by the transfer power and switch current which is used to design SRC for induction cooktop. 

The SRC for induction cooktop is designed to meet the two requirements which are the selected switch 

rated current and the desired transmission power. 

The transmission power of the induction cooktop is determined by the equivalent load resistance and 

the voltage induced to the IH working coil. The transmission power equation is described as follows: 

2
coil

transfer

eq

V
P

R
=                                     (1) 
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Fig. 11. Resonant network current waveform at resonant frequency. 

 

where Ptransfer is transmission power, Vcoil is the voltage induced to the IH working coil in primary, Req 

is the equivalent load resistance. The voltage induced to the IH working coil in primary and the 

equivalent load resistance are described as follows: 

2
coil v inV G V


=                                   (2) 

2
eq containerR n R=                                   (3)          

where Gv is the resonant network voltage gain, Vin is the input voltage, n is the number of turns in 

primary, Rvessel is the resistance of the vessel. Therefore, the transmission power of the SRC for induction 

cooktop is determined by the equivalent load resistance when the input voltage is regarded as a fixed 

value. As the equivalent load resistance decreases, the transmission power increases. The resonant 

network voltage gain derived in [21] is described as follows: 

 
2

1

2
1 ( )

8

out
v

in s r

r s

V n
G

V
j Q

 

 

= = 

+    −

                         (4) 

where 𝜔𝑟 = 2π𝑓𝑟  ,  𝜔𝑠 = 2π𝑓𝑠 . The voltage gain of SRC for induction cooktop is controlled by 

adjusting switching frequency. 

In the SRC for induction cooktop, the primary side switch current is a factor in determining the rated 

current of the switch. The current flowing through the resonant network is approximated by the primary 

side current. Fig. 10 shows the equivalent circuit of the resonant network at resonant frequency and Fig. 

11 shows the waveform of the resonant network current at resonant frequency. The peak current of the 

magnetizing inductance and the resonant network current at the resonant frequency are derived as 

follows: 

4 container
m

m s

nV
I

L T
=                                   (4)  

2 sin(2 )r rms rI I f = +                               (5) 

where Lm is magnetizing inductance, Lr is the resonant inductance, Ts is the switching period, Irms is the 
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RMS current of the resonant network. There is a point where the resonant network current and the 

magnetizing inductor current are the same at each half-cycle according to the current waveform in Fig. 

11. Thus, (6) is derived as follows: 

4
2 sin( )

pot

rms

m s

nV
I

L T
 =                              (6) 

where Vvessel is the voltage induced to the vessel. The difference between the resonant network current 

and the magnetizing inductor current is equal to the current delivered to the vessel. Thus, (7) is derived 

as follows: 

2

0
( )

2

Ts
s pot

r m

pot

T V
i i dt

nR
− =                               (7) 

The RMS current of the resonant network are the voltage induced to the vessel are derived by 

summarizing the above equations. Thus, (8) and (9) is derived as follows: 

4 2 2

2

2

21
8

8

pot pot s

r

pot m

V n R T
I

nR L
= +                           (8) 

coil
pot

V
V

n
=                                    (9) 

Since the left terms in the root of equation (8) is a very small value, it can be approximated by equation 

(10). Equation (10) is derived as follows: 

21 2
8

8 4

pot pot

r

pot pot

V V
I

nR nR


= =                          (10) 

Therefore, after determining a switch rated current, can determine the minimum value of the equivalent 

load resistance which does not exceed the switch rated current. And, the maximum equivalent load 

resistance value can be determined by substituting the minimum transmission power into equation (1). 

When the maximum equivalent load resistance and the minimum equivalent load resistance are 

determined, the equivalent load resistance range is determined. Therefore, when the equivalent load 

resistance value measured on the primary side is within this equivalent load resistance range, it can be 

heated to the desired power in an operation that does not exceed the switch rated current. 

 

2.2 Operational principle 
 

In this section, the operational principles of the conventional SRC for induction cooktop is analyzed. 

There are two modulation modes based on the resonant current, which are the powering and the 

freewheeling process, respectively. The power is transferred from the primary side to the vessel when  
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Fig. 12. Operational waveforms of SRC for induction cooktop 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 13. Operational circuit diagram of SRC for induction heating 
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the high side switch is turn on. Fig. 13 Shows the operational circuit diagrams of SRC for induction 

cooktop. Fig. 13(a) and (c) show the operational circuit diagrams of the powering mode. In the 

freewheeling process, the power is not transferred to the vessel and magnetizing current is sum of the 

output current referred to as the primary side. Fig. 13(b)(d) is the operational circuit diagram of the 

freewheeling mode. 

 

Mode 1:(t0-t1) [Fig. 13(a)]: The higher switch S1 is turn-on at t0. This mode is powering mode which 

transfer the power to the vessel. The resonant current IL flows through S1. The current direction of 

Switch S1 is negative direction. It guarantees zero voltage of switch S1. The zero-voltage switch (ZVS) 

of switch S1 is achieved at t0. 

 

Mode 2:(t1-t2) [Fig. 13(b)]: The higher switch S1 is turn-off at t1. The resonant current IL charges the 

output capacitance of the higher switch S1 and discharges the output capacitance of the lower switch 

S2 during the turn-off transient period of S1. After the output capacitance of the lower switch S2 is fully 

discharged, the body diode of S2 is conducted before t2.  

 

Mode 3:(t2-t3) [Fig. 13(c)]: The lower switch S2 is turn-on at t2. This mode is similar to the powering 

mod of mode 1. The current direction of switch S2 is positive direction. The zero-voltage switch (ZVS) 

of switch S2 is achieved at t3. 

 

Mode 4:(t3-t4) [Fig. 13(d)]: The lower switch S2 is turn-off at t3. The resonant current IL charges the 

output capacitance of the lower switch S2 and discharges the output capacitance of the higher switch 

S1. After the output capacitance of the higher switch S1 is fully discharged, the body diode of S1 is 

conducted before t4. At the mode 1, the ZVS is achieved by repeating this procedure. 

 

2.3 Characteristics of the IH cooktop according to material of vessel  
 

  In this section, the load characteristics of the SRC for induction cooktop is analyzed and introduce 

the design considerations and challenge for the induction cooktop converter. As described in the 

previous section, the load equivalent load resistance varies depending on the material of the vessel. 

Heating the low-resistivity materials which has the low equivalent load resistance is a challenge because 

the low equivalent load resistance induces the high switch current which increases the switch rated 

current. Fig. 14 shows the IH working coil with 16 turns which is used in induction cooktop product. 

Fig. 15 shows the examples of vessels according to materials. Fig. 16 shows the RMS switch current 

according to the material of the vessels. This figure is plotted by using equation (8). As shown in Fig.  
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Fig. 14. IH working coil with 16 turns 

 

             (a)                         (b)                        (c) 

Fig. 15. Examples of vessels according to material: 

(a) SUS-304 18-8, (b) SUS-304 18-10, (c) Aluminum 

 

Fig. 16. RMS switch current according to resistance of vessel 

 

16, the aluminum vessel which is the ferromagnetic material induces the higher RMS switch current 

than the other vessels based on 2 kW power condition. It causes a very high switch rated current under 

the condition of heating in the same burner. The way to overcome this problem is to increase the 

equivalent load resistance of the SRC for induction cooktop. The traditional ways to increase the 

equivalent load resistance of the IH converter are to increase the operating frequency induced to the IH  
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TABLE I SIMULATION DESIGN SPECIFICATION OF CONVENTIONAL IH SYSTEM 

Transmission Power, Po 2.0 kW 
SUS-304 18-8 

Resistance of vessel 
2.1 Ω, at 24.7 kHz 

Input Voltage, Vi 220 Vdc 
SUS-304 18-8 

Resistance of vessel 
0.9 Ω, at 37.5 kHz 

Turn numbers, N 16 turns 
Aluminum 

Resistance of vessel 
0.3 Ω, at 36.0 kHz 

Resonant Inductance, Lr 28.2 uH Resonant Frequency, fr  21.8 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 24.7 kHz 

Resonant Inductance, Lr 15.1 uH Resonant Frequency, fr  29.8 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 37.5 kHz 

Resonant Inductance, Lr 14.7 uH Resonant Frequency, fr  30.2 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 36.0 kHz 

 

 

Fig. 17. Simulation model of conventional SRC for induction cooktop 

 

 

working coil and increase the number of turns in primary. However, increasing the number of turns in 

primary has limitation due to the high coil conduction losses which is dominant to the total loss of the 

IH converter. Increasing the operating frequency induced to the IH working coil by increasing the 

switching frequency causes the high switching losses. Especially, the switching frequency must increase 

dramatically in order to heat the non-ferromagnetic material. Therefore, the conventional induction 

cooktops are not compatible with the non-ferromagnetic material. 

 

2.4 Simulation & experimental results 
   

  In this section, the PSIM simulation and experimental results of the 3 kW rated conventional IH 

prototype inverter which consists of the half-bridge series resonant structure. The specification of the  
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(a) 

 

(b) 

 

(c) 

Fig. 18. Simulation waveforms of conventional SRC for induction cooktop: (a) SUS-304 18-8, (b) 

SUS-304 18-10, (c) Aluminum 

 

simulation is shown in TABLE I. Fig. 17 shows simulation model of the conventional SRC for induction 

cooktop. The number of the coil turns in primary of IH working coil is 16 turns which is widely used 

for heating the ferromagnetic material in industry. The resonant inductance and capacitance are 

determined as the factors measured based on the coil which have 16 turns in primary. The materials of  

the vessel examples are STS-304 18-8, STS-304 18-10, and aluminum shown in Fig. 15. STS-304 18-

8 material is commonly used as the ferromagnetic vessel which has high resistance. STS-304 18-10 

material has the relatively low resistance compared to the STS-304 18-8 material. Aluminum material 

is used as the representative sample of common kitchen vessels. Fig. 18 shows the simulation 

waveforms according to the material of the vessel. TABLE II shows the simulation results according to 

the material of the vessel. The output power and switch current according to the material of the vessel  
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TABLE II SIMULATION RESULT OF CONVENTIONAL IH SYSTEM 

SUS-304 

18-8 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 13.50 A 

Transmission Power, Po 2.97 kW Switch current (RMS) 40.06 A 

SUS-304 

18-10 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 13.54 A 

Transmission Power, Po 2.98 kW Switch current (RMS) 59.07 A 

Aluminum 
Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 13.63 A 

Transmission Power, Po 3.0 kW Switch current (RMS)  100.39 A 

 

TABLE III EXPERIMENT DESIGN SPECIFICATION OF CONVENTIONAL IH SYSTEM 

Transmission Power, Po 3.0 kW 
SUS-304 18-8 

Resistance of vessel 

2.1 Ω, at 24.7 

kHz 

Input Voltage, Vi 220 Vdc 
SUS-304 18-8 

Resistance of vessel 

0.9 Ω, at 37.5 

kHz 

Turn numbers, N 16 turns 
Aluminum 

Resistance of vessel 

0.3 Ω, at 36.0 

kHz 

SUS-304 18-8 
Resonant Inductance, Lr 28.2 uH Resonant Frequency, fr  21.8 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 24.7 kHz 

SUS-304 18-10 
Resonant Inductance, Lr 15.1 uH Resonant Frequency, fr  29.8 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 37.5 kHz 

Aluminum 
Resonant Inductance, Lr 14.7 uH Resonant Frequency, fr  30.2 kHz 

Resonant Capacitance, Cr 1,880 uF Switching Frequency, fs 36.0 kHz 

 

 

 

Fig. 19. Experimental setup of 3 kW prototype conventional IH system 
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(a) 

 

(b) 

 

(c) 

Fig. 20. Experimental results of conventional SRC for induction cooktop: (a) SUS-304 18-8, (b) SUS-

304 18-10, (c) Aluminum 

 

are analyzed by PSIM simulation based on the 3 kW rated power that achieves the heating speed of the 

universal induction cooktop. STS-304 18-8, STS-304 18-10, and aluminum material induce switch 

current 40 A, 59 A, and 100 A, respectively. In the case of STS-304 18-10 and aluminum material, the 

switch device and package price raises up due to very high switch heat, or it is impossible to implement 

as real converter. The experiment design specifications of conventional IH system is shown in TABLE 

III. Fig. 19 shows experimental setup of 3 kW conventional IH prototype which includes an the IH 

working coil under an the IH load, a digital controller (TMS320F28335), a AC power supply (KIKUSUI 

PCR6000LA), and a power converter. In addition, oscilloscope (Teledynelecroy Waverunner610Zi), 

and power analyzer (N4L PPA5530) are used to measure experimental results. Fig. 20 shows the  
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TABLE IV EXPERIMENTAL RESULT OF CONVENTIONAL IH SYSTEM 

SUS-304 

18-8 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 13.50 A 

Transmission Power, Po 2.97 kW Switch current (RMS) 40.06 A 

SUS-304 

18-10 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 13.54 A 

Transmission Power, Po 2.98 kW Switch current (RMS) 59.07 A 

Aluminum 
Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) Burn-out 

Transmission Power, Po Burn-out Switch current (RMS)  Burn-out 

 

TABLE V LOSS ACCORDING TO SWITCH PACKAGE TYPE 

Parameters TO-247 TO-264 SOT-227 

Conduction Loss 49.48 [W] 51.90 [W] 28.97 [W] 

Switching Loss 10.71 [W] 10.31 [W] 2.51 [W] 

Total Switching Loss 66.72 [W] 66.95 [W] 36.82 [W] 

Junction Temperature 119.74 [℃] 94.63 [℃] 31.44 [℃] 

 

experimental results of the conventional SRC for induction cooktop according to material of the vessel. 

TABLE IV describes the experimental results of 3 kW conventional IH prototype. The experimental 

results are similar to the simulation results. The STS-304 18-8 and STS-304 18-10 materials have a 

switch current of 40 A and 60 A, respectively. However, in the case of the aluminum material, when 

using the typically used RMS 60 A MOSFET switch, the switch device is burn-out due to high switch 

current shown in Fig. 20 (c). In order to heat it steadily, there is a great increase in the cost of switching 

devices with rated currents of peak 200 A and RMS 150 A, as well as a cooling system that can dissipate 

the heat. 

 

  Ⅲ. SRC for all-metal induction cooktop 
 

To heat the non-ferromagnetic material, various research have been proposed [22-25]. As 

representative examples are the high-frequency operation method [26] and the THM method. Both 

methods increase the effective resistance of the vessel by lowering the skin depth of the vessel. A 

method of amplifying the frequency applied to the IH working coil was used to lower the skin depth of 

the vessel. In this section, the two representative methods for all-metal induction heating technology 

are analyzed. The operational principles, design considerations and strengths and weaknesses are 

introduced. 

 

3.1 HFO  
 

The HFO method simply increases the switching frequency to decrease the skin depth of the vessel 

to increase the load equivalent load resistance. Fig. 21 shows the equivalent load resistance of the  
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Fig. 21. Switching device according to package type for HFO  

 

 

Fig. 22. Switching device according to package type for HFO  

 

vessel according to the operating frequency of each material. However, the switching frequency 

operated in HFO method causes high switching losses, resulting in high temperature in the switch. This 

not only increases the switch rated current but also raises the cost for the switch cooling system which 

relieves a switch heat. Fig. 22 shows switching device according to package type for HFO method. In 

the HFO method, SiC device is used to reduce a heat in switch due to high frequency switching. SiC 

device has the lower switching losses at the same switching frequency due to their lower on-resistance 

compared to the other devices such as MOSFET. Therefore, the HFO method compensated for the 

drawbacks due to the high switching frequency by using a SiC device with low switching losses. 

 

3.2 THM  

In the previous research, the THM method is proposed in 2016. A common challenge of all-metal 

induction heating technology is to reduce the switch current by increasing the load equivalent load 

resistance. The method of increasing the load equivalent load resistance in IH inverter is to increase the 

number of turns in primary and the operating frequency of the current induced to the IH working coil. 

However, increasing the number of turns in primary has limitation by increasing the coil size and coil 

conduction loss which is dominant in the loss of the IH inverter. And Increasing the switching frequency 

to increase the operating frequency induced to the IH working coil increases the switching loss such as  
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Fig. 23. Circuit diagram of THM method 

 

 

Fig. 24. Experimental results of THM method 

 

a turn-on and turn-off loss. In THM method, in order to apply the high frequency current to the IH 

working coil without increasing the switch frequency, the series resonant network of the IH inverter is 

designed with the third harmonic filter. At the bridge circuit, the current with switching frequency is 

generated, and the third harmonic components is filtered by passing through the third harmonic series 

resonant network. Thus, the frequency of current induced to the IH coil is three times higher switching 

frequency is generated. Fig. 23 shows the circuit diagram of the THM method. The THM scheme 

includes the front-end active PFC, the full-bridge structure and resonant network with relay. The THM 

method change the resonant capacitor according to the material of the vessel by using relay. the resonant 

capacitor Cr1 is used to heat the ferromagnetic material and the resonant capacitor is formed of Cr1 and 

Cr2 when the non-ferromagnetic material heated. In this research, the SRC with THM method is 

designed with a switching frequency of 25 kHz and a resonant frequency of the series resonant network 

of 75 kHz. The design procedures of THM resonant inverter is similar to a typical IH inverter. The 

switching frequency is described as follow: 

1

2
s

r r

f
L C

=                                    (11) 

where fs is the switching frequency, Lr is the resonant inductance, Cr is the resonant capacitance. The 

resonant capacitor Cr1 and Cr2 can be calculated as follows: 
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Fig. 25. Fourier series of square waveforms 

 

Fig. 26. First harmonic and third harmonic voltage gain curves 
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where fsF is the switching frequency when the ferromagnetic material is heated, LrF is the resonant 

inductance of the ferromagnetic material, fsNF is the switching frequency when the non-ferromagnetic  
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Fig. 27. First harmonic and third harmonic voltage gain curves at high Q-factor 

 

Fig. 28. First harmonic and third harmonic voltage gain curves at low Q-factor 

 

material is heated, LrNF is the resonant inductance of the non-ferromagnetic material. Fig. 24 shows 

experimental results of THM. It increases the equivalent load resistance by reducing skin-depth of the 

vessel. Therefore, the increased equivalent load resistance reduces the switching current of the IH 

inverter which reduces the switch rated current. Since the switching frequency of the THM method is 

maintained at the same level as that of the conventional IH inverter, the switching losses does not 

deteriorate as compared with the conventional one, as well.  

However, the THM method has critical demerits. Fig. 25 shows the Fourier series of square 

waveforms. The Fourier series expansion of a square wave is indeed the sum of sines with odd-integer 

multiplies of the fundamental frequency. The third harmonic resonant network, which mainly filter the 

third harmonic components, remove the other harmonic components. The resonant network voltage 

gain of the THM method is reduced by about 1/3 shown in Fig. 26. Therefore, active power factor 

correction (PFC) is needed to compensate the reduced voltage gain of the resonant network in the THM 

method. In [27], the series resonant inverter which is combined with a power factor correction (PFC)  
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Fig. 29. Non-ZVS waveform of THM inverter affected by 1st harmonic 

 

circuit is proposed. The PFC boost-up the input voltage from 350 Vdc to 450 Vdc, which compensates 

the small voltage gain of the resonant network according to the THM. However, it causes poor cost-

effectiveness of the all-metal IH cooktop due to large passive components for the PFC. In addition, the 

Q-factor of the series resonant inverter for IH should be considered to implement the third harmonic 

method. Fig. 27 and Fig. 28 show the first harmonic and third harmonic voltage gain curves at high Q-

factor and low Q-factor, respectively. In a series resonant inverter, the Q-factor determines the 

selectivity of the voltage gain. As shown in Fig. 27 and Fig. 28, the higher Q-factor, the less the effect 

of fundamental harmonics. The lower Q-factor, the smoother the slope of the voltage gain curve and the 

lower the selectivity of the voltage gain. Fig. 29 shows the non-ZVS waveform of the converter with 

THM method affected by the fundamental harmonic. As shown in Fig. 29, the third harmonic 

waveforms affected by the fundamental harmonic is distorted and the desired current waveform can not 

be obtained. Therefore, the ZVS operation is impossible. It leads to high heat to the switch, which makes 

unstable induction heating operation. The Q-factor formula that determines the stability of the third 

harmonic induction heating inverter is as follows: 

1 r

eq r

L
Q

R C
=                                    (17) 

where Req is the equivalent load resistance, Lr is the resonant inductance, Cr is the resonant capacitance. 

The high resonant inductance and low load equivalent load resistance are required to design the high 

Q-factor. Therefore, the THM method has design constraints that require to design the IH working coil 

with high leakage inductance. 

 

3.3 Simulation & experimental results 
 

In this section, the theoretical analysis is validated by using PSIM simulation and 2 kW prototype IH  
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TABLE VI SIMULATION DESIGN SPECIFICATIONS OF HFO IH SYSTEM 

Transmission Power, Po 2.0 kW 
SUS-304 18-8 

Resistance of vessel 
1.8 Ω, at 27.7 kHz 

Input Voltage, Vi 220 Vdc 
Aluminum 

Resistance of vessel 
1.5 Ω, at 110 kHz 

Turn numbers, N 19 turns   

SUS-304 18-8 
Resonant Inductance, Lr 27.2 uH Resonant Frequency, fr  25.8 kHz 

Resonant Capacitance, Cr 1,399 nF Switching Frequency, fs 27.7 kHz 

Aluminum 
Resonant Inductance, Lr 16.9 uH Resonant Frequency, fr  100 kHz 

Resonant Capacitance, Cr 150 nF Switching Frequency, fs 110 kHz 

 

Fig. 30. Simulation model of HFO method 

 

(a) 

 

(b) 

Fig. 31. Simulation waveforms of HFO method: (a) STS-304 18-8, (b) Aluminum 
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TABLE VII SIMULATION RESULTS OF HFO IH SYSTEM 

SUS-304 

18-8 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 28.06 A 

Aluminum 
Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  38.64 A 

 

TABLE VIII SIMULATION DESIGN SPECIFICATIONS OF THM IH SYSTEM 

Transmission Power, Po 2.0 kW 
SUS-304 18-8 

Resistance of vessel 
2.3 Ω, at 27.7 kHz 

Input Voltage, Vi 
350 ~ 450 

Vdc 

Aluminum 

Resistance of vessel 
1.8 Ω, at 85 kHz 

Turn numbers, N 41 turns   

SUS-304 18-8 
Resonant Inductance, Lr 22 uH Resonant Frequency, fr  25.8 kHz 

Resonant Cap., Cr 1,579 nF Switching Freq., fs 33.5 kHz 

Aluminum 

Low 

Q 

Resonant Inductance, Lr 16 uH Resonant Frequency, fr  83 kHz 

Resonant Cap., Cr 229 nF Switching Freq., fs 28.3 kHz 

High 

Q 

Resonant Inductance, Lr 130 uH Resonant Frequency, fr  83 kHz 

Resonant Cap., Cr 28.2 nF Switching Freq., fs 28.3 kHz 

 

inverter. The overall simulation model of the HFO method is shown in Fig. 30, which consists of a 

diode rectifier, the half-bridge structure, the resonant network with relay which change the resonant 

capacitor according to the material of the vessel. This simulation TABLE VI describes the simulation 

design specifications of the HFO method. This simulation is based on the HFO using MOSFET devices.  

The design specifications are based on the resonant inductance and the load equivalent load resistance 

measured by using the RLC meter. The switching frequency is set to 100 kHz. The equivalent load 

resistance of the aluminum vessel measured at 100 kHz is 2.1 Ω, which is capable of heating 2 kW with 

a half-bridge input voltage. The SUS-304 18-8 vessel, which is a representative example of the 

ferromagnetic material, is the same as the conventional IH inverter design specifications. Fig. 31 shows 

the simulation waveforms of the HFO method. As shown in Fig. 31, both SUS-304 18-8 and aluminum 

materials achieved the ZVS operation. TABLE VII describes the simulation results of HFO IH system. 

Both non-ferromagnetic material vessel and ferromagnetic material vessel achieved the desired power 

2 kW while satisfying the switch rated current of 40 A. The simulation results show that all-metal IH 

technology capable of heating the aluminum material. However, if the switch heat is high, the cost of 

the switch device and package increase to operate stably. Switching loss, which is the main cause of 

switching heat, will be compared with the THM method after the THM method simulation analysis. 

TABLE VIII shows the simulation design specifications of THM IH system. For a fair comparison 

with the HFO method, the resonant frequency of the non-ferromagnetic material is set to be the same. 

Fig. 32 shows the simulation model of the THM method. The THM method consists of active PFC, 

full-bridge structure and resonant network. The active PFC compensates for the insufficient voltage  
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Fig. 32. Simulation model of THM method 

 

 

(a) 

   

(b) 

 

(c) 

Fig. 33. Simulation waveforms of THM method 

(a) STS-304 18-8, (b) Aluminum (high Q-factor), (c) Aluminum (low Q-factor) 
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(a) 

 

(b) 

Fig. 34. FFT simulation of THM method with high Q-factor and low Q-factor 

(a) High Q-factor, (b) Low Q-factor 

 

gain of the resonant network during the THM operation to heat the non-ferromagnetic material. The 

switching frequency for heating the non-ferromagnetic material is designed as the three times smaller 

than its resonant frequency. And input voltage is boosted up to 450 Vdc which compensates the voltage 

drop due to the third harmonic operation. Fig. 33 shows the simulation waveforms of the THM method.  

  The conventional IH inverter which use the first harmonic resonant network is used for heating the 

ferromagnetic material SUS-304 18-8. When the non-ferromagnetic material is heated, the period of 

the switch current appears three times in one switching cycle, and the ZVS operation is achieved. It is 

achieved by designing with the high Q-factor which makes the first harmonic effect small. Fig. 33, (c) 

shows the simulation waveforms of the THM method with low Q-factor, designed with the IH working 

coil which has the low coil inductance. By designing with the low Q-factor, the effect of the first 

harmonic becomes large, distorting the switching current waveform. It causes that the ZVS operation 

was not achieved. Fig. 34 shows the FFT simulation of THM method with high Q-factor and low Q-

factor. As shown in Fig. 34, in the low Q-factor condition, the first harmonic effect around 30 kHz band 

is bigger than the high Q-factor condition. As analyzed in the previous section, the stability of operation  
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TABLE IX SIMULATION RESULTS OF THM IH SYSTEM 

SUS-304 

18-8 

Input Voltage, Vi 450 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 28.06 A 

Aluminum 

High  

Q-factor 

Input Voltage, Vi 350 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  38.64 A 

1st harmonic magnitude 1.43   

Low  

Q-factor 

Input Voltage, Vi 350 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  38.64 A 

1st harmonic magnitude 12.00   

 

 

(a) 

 

(b) 

Fig. 35. Comparison loss data of HFO and THM method: (a) Aluminum, (b) SUS-304 18-8 

 

in the THM method is determined by the Q-factor of the SRC. TABLE IX describes the simulation 

results of the THM method. As described in TABLE IX, the THM method achieves the desired power 

2 kW while satisfying the switch rated current 40 A by controlling the input voltage and the frequency  
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TABLE X EXPERIMENT DESIGN SPECIFICATION OF THM IH SYSTEM 

Transmission Power, Po 2.0 kW 
SUS-304 18-8 

Resistance of vessel 
2.2 Ω, at 27 kHz 

Input Voltage, Vi 
350 ~ 450 

Vdc 

Aluminum 

Resistance of vessel 
1.8 Ω, at 84 kHz 

Turn numbers, N 41 turns   

SUS-304 18-8 
Resonant Inductance, Lr 22 uH Resonant Frequency, fr  26.8 kHz 

Resonant Cap., Cr 1,600 nF Switching Freq., fs 30.5 kHz 

Aluminum 

Low 

Q 

Resonant Inductance, Lr 16 uH Resonant Frequency, fr  82.9 kHz 

Resonant Cap., Cr 230 nF Switching Freq., fs 28 kHz 

High 

Q 

Resonant Inductance, Lr 130 uH Resonant Frequency, fr  80.5 kHz 

Resonant Cap., Cr 30 nF Switching Freq., fs 28 kHz 

 

 

Fig. 36. All-metal IH working coil manufactured by Hitachi, Ltd 

 

induced the IH working coil according to the material of the vessel. The simulation results how that all-

metal IH technology capable of heating the aluminum material. Fig. 35 shows the comparison loss data 

of HFO and THM method. It includes the switching loss which is turn-on and turn-off loss, switch 

conduction loss, switch capacitor loss, and the IH working coil conduction loss. For the technical 

performance comparison, the loss analysis was implemented based on the same MOSFET device. In 

shown as Fig. 35, the THM method has the lower switch loss, which includes the turn-on and turn-off 

loss and switch conduction loss, than the HFO method in the same desired power condition. As in the 

simulation, if the HFO method is implemented by using the MOSFET device, stable operation cannot 

be guaranteed due to the high switch heat. It is not possible to implement the HFO method using 

MOSFET in IH technology which should operate stably for a long time. The SiC-based HFO 

optimization is a technology to compensate for high switch heat due to high switching frequency, which 

is distant from the technological advanced of all-metal IH technology. The HFO method is the solution 

for improving performance that can be combined with other all-metal technologies such as the THM 

method. Therefore, the industry adopts the THM method as the most advanced technology. The LAM  
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TABLE XI EXPERIMENT RESULTS OF THM IH SYSTEM 

SUS-304 

18-8 

Input Voltage, Vi 450 Vdc Input Current, Ii (RMS) 4.44 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 26.55 A 

Aluminum 

High  

Q-factor 

Input Voltage, Vi 350 Vdc Input Current, Ii (RMS) 5.70 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  40.50 A 

Low  

Q-factor 

Input Voltage, Vi 350 Vdc Input Current, Ii (RMS) Burn-out 

Transmission Power, Po Burn-out Switch current (RMS)  Burn-out 

 

 

Fig. 37. Experimental setup of 2 kW prototype THM IH system 

 

 

Fig. 38. Experimental results of THM method (SUS-304 18-8) 

 

proposed in the next section will be compared with the THM method. 

TABLE X describes the experiment design specification of THM IH system. Since the simulation 

design specification TABLE VIII is based on the experimental setup TABLE X, they two design 

specifications are similar. Fig. 36 shows the all-metal IH working coil manufactured by Hitachi, Ltd., 

used for the THM method [28-29]. The all-metal IH working coil is fabricated the high coil turns in 

primary. In the THM method, since the high Q-factor is required, the high coil inductance is needed. In 

addition, due to the active PFC, the DC-link voltage uses 350 to 450 Vdc, which is higher the 220 Vdc  
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(a) 

 

(b) 

Fig. 39. Experimental results of THM method according to Q-factor 

(a) Aluminum (high Q-factor), (b) Aluminum (low Q-factor) 

 

used in the conventional IH system. Therefore, a high load equivalent load resistance should be 

produced with a high number of IH working coil turns to satisfy the desired power. Fig. 37 shows the 

experimental setup of the 2 kW prototype for THM IH system. In shown Fig. 37, the DC power supply 

was used to replace the active PFC. Fig. 38 shows experimental results of the THM method when 

heating the ferromagnetic material SUS-304 18-8. Fig. 39 shows experimental results of the THM 

method according to Q-factor. As the simulation results, both SUS-304 18-8 and aluminum material is 

heated while satisfying the desired power and switch rated current 40 A. However, the ZVS operation 

was not achieved in the low Q-factor condition. Experiment designed with a low Q-factor were burned 

out due to the high switch heat after a short period of heating. As a result, the all-metal IH performance 

and functional limits of the THM method were verified by implementing the experiment. 
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Fig. 40. Circuit diagram of LAM 

 

(a)                                        (b) 

Fig. 41. Conceptual waveforms of input voltage controlling mode in LAM: 

(a) Half-bridge mode, (b) Full-bridge mode 

 

IV. Analysis and design of LAM 
 

In this section, LAM is analyzed which can solve a cost issue of the all-metal IH technology, and 

obtain the heating capability for the ferro- and non-ferromagnetic materials. Fig. 40 shows the circuit 

diagram of the LAM which includes the full-bridge structure and the resonant network with relays. This 

resonant network can control the resonant frequency according to material of vessels. The LAM has 

four modulation modes which change the input voltage and the operating frequency induced to the IH 

working coil. These modulation modes are changed according to the material of the vessel. where Vac 

is the AC input voltage, VaN and VbN are the leading leg between S1 and S2, and the lagging lag between 

S3 and S4, respectively. In the LAM, the all-metal IH working coil manufactured by Hitachi, which is 

used to implement the THM method, was selected for a fair comparison evaluation. In this section, the 

design methodology, operational principles and performance evaluation of the LAM is analyzed. 
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4.1 Proposed modulation modes 
 

Fig. 41. shows the conceptual voltage waveforms of the input voltage controlling mode in the LAM. 

These modes are operating modes to compensate for the difference in heating performance due to the 

resistance difference of the ferromagnetic material. Among the vessel made of ferromagnetic material, 

there is a resistance difference according to the manufacturer. In the LAM, it is possible to heat the 

ferromagnetic materials as the desired power by changing the modulation mode according to the 

material of the vessel. In the full-bridge mode, the bridge voltage Vab is maintained as level of the input 

voltage. At the resonant frequency, the vessel can be approximated as a resistance, and the voltage gain 

of the resonant network is unity. The transmission power of the full-bridge mode is described as follows: 

2

,max

,

in
fb

pot f

V
P

R
=                                   (18) 

where Pfb,max is the transmission power of the full-bridge mode, Vin is the input voltage, and Rvessel,f is 

the equivalent load resistance of vessel measured at the switching frequency. The minimum switching 

frequency which makes the maximum voltage gain of the resonant network is derived as the resonant 

frequency, which can be derived as follow: 
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where fr is the resonant frequency, fs,f,min is the minimum switching frequency of the full-bridge mode, 

Cr is the resonant capacitor, and Lr is the coil inductance. The conceptual waveform of the half-bridge 

mode is shown in Fig. 41 (a). In the half-bridge mode, the bridge voltage VaN is a half of the input 

voltage. The transmission power of the half-bridge mode is four times smaller than the full-bridge mode 

as follow: 
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where Phb,max is the transmission power of the half-bridge mode, Rvessel,h is the equivalent load resistance 

of vessel of the half-bridge mode. The resonant frequency of the half-bridge mode is designed as the 

same resonant frequency of the full-bridge mode. Fig. 42. shows the conceptual waveforms of the 

frequency amplifying modes in the LAM. As shown in Fig. 42 (a), The frequency-doubling mode can 

obtain the operating frequency induced to the IH which is two times higher the switching frequency. As 

shown in Fig. 42 (a), the frequency-doubling mode amplifies the operating frequency induced to the IH 

working coil. And the frequency-doubling mode uses one pole of the full-bridge structure as a zero 

vector [30-33], so that the voltage gain is reduced to 1/2. The transmission power of the frequency-

doubling mode can be derived as follow: 
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(a)                                        (b) 

Fig. 42. Conceptual waveforms of frequency amplifying mode in LAM: 

(a) Frequency-doubling mode, (b) Frequency-triple mode 
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where Pd,max is the transmission power of the frequency-doubling mode, and Rvessel,d is the equivalent 

load resistance of vessel measured at the operating frequency which is two times higher switching 

frequency. The doubled operating frequency increases the effective resistance by reducing the skin-

depth of the vessel. The frequency-doubling mode should design the resonant frequency twice the 

switching frequency. The resonant network of the frequency-doubling mode is combined with the 

elements of the fundamental harmonic filter used in the input voltage change modes. The resonant 

network design procedure of the frequency-doubling mode is similar to that of the THM method as 

follow: 
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where fr,d is the resonant frequency of the frequency-doubling mode, fs,d,min is the minimum switching 

frequency of the frequency-doubling mode, Lr,d is the coil inductance at the doubled operating frequency, 

and Cr,d is the resonant capacitor of the frequency-doubling mode. The design procedure of the 

frequency  
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triple mode is similar. As the frequency-doubling mode, since the voltage gain of the bridge voltage is 

reduced to 1/2, the transmission power of the frequency-triple mode is derived as follows: 
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where Pt,max is the transmission power of the frequency-triple mode, Rvessel,t is the equivalent load 

resistance of vessel measured at the tripled operating frequency. The resonant network design procedure 

of the frequency yripler mode is as follows: 

, , ,min

, ,

1

6 ( )
r t s t

r t r r t

f f
L C C

= =
+

                        (22) 

,

,

( )
9

r
r r t r

r t

L
C C C

L
+ = 


                             (23) 

,
,

,

4

9

r r t
r t r

r t

L L
C C

L

− 
= 


                             (24) 

where fr,t and fs,t,min  are the resonant frequency of the frequency-triple mode and the minimum 

switching frequency of the frequency-triple mode, respectively, Lr,t is the coil inductance at the tripled 

operating frequency, and Cr,t is the resonant capacitor of the frequency-triple mode.  

 

4.2 Proposed algorithm 

   

The LAM has the four modulation modes which have the different operating conditions for each 

mode by changing the bridge voltage or the frequency induced to the IH working coil. Each mode is 

selected according to the resistance of the vessel loaded on the IH working coil. In this section, the 

mode selection algorithm is analyzed. Fig. 43 shows the block diagram of the operational mode 

selection sequence. The maximum resistance of vessel of the full-bridge mode can be derived as follows: 

2
max

, ,max
in

pot f

rated

G V
R

P


=                                (25) 

where Gmax is the maximum voltage gain and Prated is the desired power. The maximum resistance of 

vessel of the full-bridge mode is four times higher that of other modulation mode. The maximum 

resistance of vessel of the half-bridge mode is same to that of the frequency-doubling and triple modes 

as follows: 

2
max

, ,max , ,max , ,max
4
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pot h pot d pot t
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                    (26) 
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Fig. 43. Block diagram of operational mode selection sequence 

 

The frequency-doubling and triple modes should satisfy (26) at the frequency which is two or three 

times higher switching frequency. When the equivalent load resistance of vessel is higher (26), the LAM 

inverter operates under the full-bridge mode. When the equivalent load resistance of vessel is satisfied 

with (26) at the frequency which is two or three times higher the switching frequency, the LAM inverter 

operates under the frequency amplifying modes. When the equivalent load resistance of vessel is 

satisfied with (26) at the switching frequency, the LAM inverter operates in the half-bridge mode. After 

the modulation mode is selected, the LAM inverter controls the transmission power using the pulse 

frequency modulation (PFM) [34-36]. If the digital controller senses no load and over current of the 

switch at the steady state, the LAM inverter resumes the proposed algorithm. 
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TABLE XII SIMULATION DESIGN SPECIFICATIONS OF LAM 

Transmission Power, Po 2.0 kW Resistance of vessel, Rvessel 9.65 Ω, at 25 kHz 

Input Voltage, Vi 220 Vdc Resistance of vessel, Rvessel 3.16 Ω, at 25 kHz 

Turn numbers, N 41 turns 
Resistance of vessel, Rvessel 2.0 Ω, at 50 kHz 

Resistance of vessel, Rvessel 2.2 Ω, at 75 kHz 

SUS-304 18-8 
Resonant Inductance, Lr 160 uH Resonant Frequency, fr  25 kHz 

Resonant Capacitance, Cr 253 nF Switching Frequency, fs 28 kHz 

SUS-304 18-10 
Resonant Inductance, Lr 144 uH Resonant Frequency, fr  25 kHz 

Resonant Capacitance, Cr 253 nF Switching Frequency, fs 26 kHz 

Aluminum 
Resonant Inductance, Lr 129 uH Resonant Frequency, fr  50 kHz 

Resonant Capacitance, Cr 63.1 nF Switching Frequency, fs 52 kHz 

Aluminum 
Resonant Inductance, Lr 129 uH Resonant Frequency, fr  75 kHz 

Resonant Capacitance, Cr 28.1 nF Switching Frequency, fs 76.5 kHz 

 

 

Fig. 44. Simulation model of the LAM 

 

4.3 Simulation & experimental results 
 

The design methodology and performance evaluation of a LAM is analyzed by using PSIM 

simulation and the 2 kW experimental prototype. The design specification of the proposed LAM is 

illustrated in TABLE XII. The minimum switching frequency is determined to 25 kHz. And the three 

vessel examples (SUS-304 18-8, SUS-304 18-10, Aluminum) are selected to test the proposed method. 

The PSIM simulation is used, which uses the same operational condition as the experimental  
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(a) 

 

(b) 

Fig. 45. Simulation waveforms of input voltage controlling mode: (a) Half-bridge mode, (b) Full-

bridge mode 
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(a) 

 

(b) 

Fig. 46. Simulation waveforms of operating frequency amplifying mode: (a) Frequency-doubling 

mode, (b) Frequency-triple mode 
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TABLE XIII SIMULATION RESULTS OF LAM 

SUS-304 18-8 

(Full-bridge mode) 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 15.3 A 

SUS-304 18-10 

(Half-bridge mode) 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  26.7 A 

Aluminum 

Frequency 

Doubler 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  26.4 A 

Frequency 

Tripler 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  29.7 A 

 

TABLE XIV EXPERIMENT DESIGN SPECIFICATIONS OF LAM 

Transmission Power, Po 2.0 kW Resistance of vessel, Rvessel 9.65 Ω, at 25 kHz 

Input Voltage, Vi 220 Vdc Resistance of vessel, Rvessel 3.16 Ω, at 25 kHz 

Turn numbers, N 41 turns 
Resistance of vessel, Rvessel 2.0 Ω, at 50 kHz 

Resistance of vessel, Rvessel 2.2 Ω, at 75 kHz 

SUS-304 18-8 
Resonant Inductance, Lr 160 uH Resonant Frequency, fr  25 kHz 

Resonant Capacitance, Cr 253 nF Switching Frequency, fs 28 kHz 

SUS-304 18-10 
Resonant Inductance, Lr 144 uH Resonant Frequency, fr  25 kHz 

Resonant Capacitance, Cr 253 nF Switching Frequency, fs 26 kHz 

Aluminum 
Resonant Inductance, Lr 129 uH Resonant Frequency, fr  50 kHz 

Resonant Capacitance, Cr 63.1 nF Switching Frequency, fs 52 kHz 

Aluminum 
Resonant Inductance, Lr 129 uH Resonant Frequency, fr  75 kHz 

Resonant Capacitance, Cr 28.1 nF Switching Frequency, fs 76.5 kHz 

 

specification. Fig. 45 and Fig. 46 show the simulation waveforms of input voltage controlling mode and 

simulation waveforms of operating frequency amplifying mode. All the modulation modes are achieved 

the ZVS operation. As shown in Fig. 45. and Fig. 46, it verifies to control the bridge voltage and 

operating frequency induced to the IH working coil according to material of pots by changing the 

modulation modes. TABLE XIII describes the simulation results of the LAM. All the modulation modes 

achieve the desired power 2 kW within the switch rated current 40 A. The experimental specification is 

described in TABLE XIV. 

  Fig. 47 shows the experiment set-up of 2 kW prototype LAM, which has the all-metal IH working 

coil, power converter, a digital controller (TI TMS320F28335) and AC power supply (KIKUSUI 

PCR6000LA). Oscilloscope (Teledyenlecroy Waverunner610Zi), and power analyzer (N4L PPA 5530) 

are used to measure the experimental results. Fig. 48 shows the experimental results of the full-bridge 

mode. Fig. 49 shows the experimental results of the half-bridge mode. The bridge voltage of the half-

bridge mode is two times smaller than the full-bridge mode. Therefore, the full-bridge and half-bridge 

modes are used to change input voltage. Fig. 50 and Fig. 51 show the experimental results of voltage 

and current at the frequency-doubling mode and frequency triple mode, respectively. The frequency- 
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Fig. 47. Experimental setup of 2 kW prototype LAM IH system 

 

 

(a) 

 

(b) 

Fig. 48. Experimental results of full-bridge mode:  

(a) 600 W, (b) 2 kW 
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(a) 

 
(b) 

Fig. 49. Experimental results of half-bridge mode:  

(a) 600 W, (b) 2 kW 

 
(a) 

 
(b) 

Fig. 50. Experimental results of frequency-doubling mode:  

(a) 600 W, (b) 2 kW 
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(a) 

 
(b) 

Fig. 51. Experimental results of frequency-triple mode:  

(a) 600 W, (b) 2 kW 

 

doubling and triple modes control the operating frequency induced to the IH working coil in the LAM 

inverter while increasing switching frequency. Fig. 52 shows the ZVS operation waveforms of the LAM 

at rated power 2 kW. All the experimental results achieve the ZVS operations, the switch rated current. 

Fig.53 shows experimental results of the proposed algorithm, which can change modulation modes. It 

starts from the frequency-triple mode which has the minimum transmission power compared with other 

modulation modes. After end of the detection of the material, all the switches of the proposed LAM are 

turned-off, then the relay circuit controls the resonant frequency by changing the resonant capacitor. 

  TABLE XV describes the experimental results of the LAM. All the proposed modulation modes 

achieve the rated power 2 kW and satisfy the switch rated current 40 A. Fig. 54 shows the Power 

efficiency according to the input power. The full-bridge mode of the LAM has the high bridge voltage 

and the small resonant current, which achieves high efficiency. The half-bridge mode has lower 

efficiency than the full-bridge mode because the resonant current of the half-bridge mode is higher that 

of the full-bridge mode. The frequency-doubling mode has the lower resistance than that of the 

frequency-triple mode because the higher operating frequency induced to the IH working coil induces 

the larger equivalent load resistance of the load by decreasing skin-depth of the vessel. However,  
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(a) 

 
(b) 

 
(c) 

 

 
(d) 

Fig. 52. ZVS operation waveforms of LAM: (a) Full-bridge mode, (b) Half-bridge mode, (c) 

Frequency-doubling mode, (d) Frequency-triple mode 
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TABLE XV EXPERIMENTAL RESEULTS OF LAM 

SUS-304 18-8 

(Full-bridge mode) 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 15.3 A 

SUS-304 18-10 

(Half-bridge mode) 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS) 26.7 A 

Aluminum 

Frequency 

Doubler 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.2 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  26.4 A 

Frequency 

Tripler 

Input Voltage, Vi 220 Vdc Input Current, Ii (RMS) 9.1 A 

Transmission Power, Po 2.0 kW Switch current (RMS)  29.7 A 

 

 

Fig. 53. Experimental result of the proposed algorithm 

 

 

Fig. 54. Power efficiency according to modulation modes 
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the lagging leg of the frequency-triple mode operates the doubled switching frequency. Therefore, the 

efficiency of the frequency-triple mode is lower than the frequency-doubling mode. 

The switching loss is described in terms of the conduction loss and the switching turn-off loss [37-

40]. The switch conduction loss is derived as follows: 

2
, ,con loss rms ds onP I R=                                 (26) 

where Rds,on is the on-resistance and Irms is the switch RMS current. In the full-bridge mode, the switch 

RMS current for each switch is derived as follows: 

1, 2, 3, 4,
2

rms
s rms s rms s rms s rms

I
I I I I= = = =                     (27) 

where Is1,rms, Is2,rms, Is3,rms, and Is4,rms are the rms current of switch 1, 2, 3, and 4, respectively. And Irms is 

the rums current of the resonant network. For the half-bridge mode, the switch RMS current of each 

switch is described as follows: 

1, 4,
2

rms
s rms s rms

I
I I= =                               (28) 

4,s rms rmsI I=                                    (29) 

3, 0s rmsI =                                     (30) 

In the frequency-doubling mode, the switch RMS current of each switch is derived as follows: 

1, 4,

3

4

rms
s rms s rms

I
I I


= =                               (31) 

2, 3,
4

rms
s rms s rms

I
I I= =                               (32) 

In the frequency-triple mode, the switch RMS current of each switch is derived as follows: 

1,

5

6

rms
s rms

I
I


=                                  (33) 

2,
6

rms
s rms

I
I =                                   (34) 

3,
3

rms
s rms

I
I =                                   (35) 

4,

2

3

rms
s rms

I
I


=                                  (36) 

The turn-on loss is negligible because the ZVS operation is achieved under whole modulation modes 

of the proposed method. The turn-off loss is described as follows: 
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Fig. 55. Power loss according to modulation modes 

 

,

1

2
off loss sw off off swP V I t f                                (37) 

where Vsw is the drain-source voltage, Ioff is the turn-off current of the power switch, toff is the turn-off 

time, and fsw is the switching frequency. All the modulation modes except the frequency-triple mode 

can use (37). The switching loss of all switches is same. However, the frequency-triple mode has 

different switching loss for each switch. It is described as follows:  

1, , 1, , ,s off loss s off loss off lossP P P= =                            (38) 

3, , 4, , ,2s off loss s off loss off lossP P P= =                            (39) 

The loss analysis according to the modulation modes at the rated power 2 kW are shown in Fig. 55. In 

the frequency-triple mode, the lagging leg switches are operated as the doubled switching frequency. It 

induces the high switching loss. At the half-bridge mode, the switch S4 is always turn-on which induces 

the high switching loss. 
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Conclusions 
 

The design methodology and performance evaluation of a LAM is analyzed by using PSIM 

simulation and the 2 kW experimental prototype. In this paper, the LAM is proposed to solve a cost 

issue of the all-metal IH technology and obtain the heating capability for the ferro- and non-

ferromagnetic materials. The LAM solves the cost issue of the conventional all-metal induction heating 

technologies such as HFO and THM methods. The HFO method uses SiC devices to decrease the high 

switch heat which is induced by operating the high switching frequency. And the THM methods uses 

the front-end active PFC to compensate the voltage gain drop which is induced by operating the resonant 

network as the third harmonic filter. The LAM implements the all-metal IH technology using only a 

full-bridge structure. 

The proposed modulation modes of the LAM use a zero-vector to increase the operating frequency 

induced to the IH working coil without increasing the switching frequency. The zero-vector of the 

proposed modulation modes increases the frequency of the bridge square wave voltage by dividing the 

switching period. The amplified operating frequency increases the effective resistance of the non-

ferromagnetic material by reducing its skin-depth. It solves the high switch heat generated by operating 

the high switching frequency, or the voltage gain drop due to a third harmonic operation. And the 

proposed modulation modes can change the input voltage magnitude. The half-bridge and full-bridge 

mode change the equivalent input voltage. It is possible to heat both the low resistance ferromagnetic 

material and the high resistance ferromagnetic material by controlling the input voltage which is 

controlled by changing modulation modes. The frequency-doubling and the frequency-triple modes can 

change the operating frequency induced to the IH working coil. These two modes are selected to heat 

the desired power by controlling the operating frequency induced to the IH working coil. 

In this paper, the operational principle of the LAM, the LAM algorithm, the design methodology, and 

the performance evaluation are analyzed. The simulation and experimental results with the 2 kW all-

metal IH inverter verifies how the proposed SRC IH inverter successfully heats the vessels made from 

ferromagnetic and non-ferromagnetic material. In addition, it verified the heating performance of non-

ferromagnetic and ferromagnetic material without the active PFC, soling the cost problem of the 

conventional all-metal IH technologies. 
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