92 research outputs found

    Room Temperature Metastability of Multilayer Graphene Oxide Films

    No full text
    International audienceGraphene oxide has multiple potential applications. The chemistry of graphene oxide and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This under- standing is crucial to enable future applications of this material. Here, a com- bined experimental and density functional theory study shows that multilayer graphene oxide produced by oxidizing epitaxial graphene via the Hummers method is a metastable material whose structure and chemistry evolve at room temperature with a characteristic relaxation time of about one month. At the quasi-equilibrium, graphene oxide reaches a nearly-stable reduced O/C ratio, and exhibits a structure intensively deprived of epoxide groups and enriched of hydroxyl groups. Our calculations show that the structural and chemical changes are driven by the availability of hydrogen in the oxidized graphitic sheets, which favors the reduction of epoxide groups and the formation of water molecules

    Chemical bonding and stability of multilayer graphene oxide layers

    Get PDF
    International audienceThe chemistry of graphene oxide (GO) and its response to external stimuli such as temperature and light are not well understood and only approximately controlled. This understanding is however crucial to enable future applications of the material that typically are subject to environmental conditions. The nature of the initial GO is also highly dependent on the preparation and the form of the initial carbon material. Here, we consider both standard GO made from oxidizing graphite and layered GO made from oxidizing epitaxial graphene on SiC, and examine their evolution under different stimuli. The effect of the solvent on the thermal evolution of standard GO in vacuum is first investigated. In situ infrared absorption measurements clearly show that the nature of the last solvent in contact with GO prior to deposition on a substrate for vacuum annealing studies substantially affect the chemical evolution of the material as GO is reduced. Second, the stability of GO derived from epitaxial graphene (on SiC) is examined as a function of time. We show that hydrogen, in the form of CH, is present after the Hummers process, and that hydrogen favors the reduction of epoxide groups and the formation of water molecules. Importantly, this transformation can take place at room temperature, albeit slowly (~ one month). Finally, the chemical interaction (e.g. bonding) between GO layers in multilayer samples is examined with diffraction (XRD) methods, spectroscopic (IR, XPS, Raman) techniques, imaging (APF) and first principles modeling

    Exendin-4 Improves Blood Glucose Control in Both Young and Aging Normal Non-Diabetic Mice, Possible Contribution of Beta Cell Independent Effects

    Get PDF
    Type 2 diabetes is highly prevalent in the elderly population. Glucagon like Peptide-1 mimetic such as exendin-4 augments post-prandial insulin secretion. However, the potential influence of aging on the therapeutic effects of this peptide has not been well studied. In this study, we examined the glucose regulatory effects of exendin-4 in mice with different ages.We treated 3-month and 20 to 22-month old C57/DBA mice with 10 nM/kg exendin-4 for 10 days with measurements of blood glucose and body weight. We performed OGTT and ITT to evaluate the glucose response and insulin sensitivity. Islet morphology and beta cell mass were measured by immuno-staining and beta cell proliferation was evaluated by BrdU incorporation and PCNA staining. Real-time PCR and western blot were used to measure protein changes in the liver tissue after exendin-4 treatment.Exendin-4 treatment improved glycemic control in both 3-month and 20 to 22-month old mice. In both groups of mice, the blood glucose lowering effect was independent of beta cell function as indicated by unchanged beta cell proliferation, insulin secretion or beta cell mass. Moreover, we found that exendin-4 treatment increased hepatic AKT and FOXO1 phosphorylation and inhibited glucose-6-phosphotase (G6P) and Phosphoenolpyruvate carboxykinase (PEPCK) expression in young mice, but this effect was attenuated in aging mice while the insulin sensitivity showed no change in the young group but significantly improved in aging mice.Based on these data, we conclude that the glucose lowering effect of exendin-4 in normal non-diabetic mice was not blunted by aging. We further showed that although there was slight difference in the glucose modulating mechanism of exendin-4 therapy in young and aged mice, the improved glucose control seemed uncorrelated with increased beta cell mass or insulin secretion

    Microbial degradation of furanic compounds: biochemistry, genetics, and impact

    Get PDF
    Microbial metabolism of furanic compounds, especially furfural and 5-hydroxymethylfurfural (HMF), is rapidly gaining interest in the scientific community. This interest can largely be attributed to the occurrence of toxic furanic aldehydes in lignocellulosic hydrolysates. However, these compounds are also widespread in nature and in human processed foods, and are produced in industry. Although several microorganisms are known to degrade furanic compounds, the variety of species is limited mostly to Gram-negative aerobic bacteria, with a few notable exceptions. Furanic aldehydes are highly toxic to microorganisms, which have evolved a wide variety of defense mechanisms, such as the oxidation and/or reduction to the furanic alcohol and acid forms. These oxidation/reduction reactions constitute the initial steps of the biological pathways for furfural and HMF degradation. Furfural degradation proceeds via 2-furoic acid, which is metabolized to the primary intermediate 2-oxoglutarate. HMF is converted, via 2,5-furandicarboxylic acid, into 2-furoic acid. The enzymes in these HMF/furfural degradation pathways are encoded by eight hmf genes, organized in two distinct clusters in Cupriavidus basilensis HMF14. The organization of the five genes of the furfural degradation cluster is highly conserved among microorganisms capable of degrading furfural, while the three genes constituting the initial HMF degradation route are organized in a highly diverse manner. The genetic and biochemical characterization of the microbial metabolism of furanic compounds holds great promises for industrial applications such as the biodetoxifcation of lignocellulosic hydrolysates and the production of value-added compounds such as 2,5-furandicarboxylic acid

    Divergent Pro-Inflammatory Profile of Human Dendritic Cells in Response to Commensal and Pathogenic Bacteria Associated with the Airway Microbiota

    Get PDF
    Recent studies using culture-independent methods have characterized the human airway microbiota and report microbial communities distinct from other body sites. Changes in these airway bacterial communities appear to be associated with inflammatory lung disease, yet the pro-inflammatory properties of individual bacterial species are unknown. In this study, we compared the immune stimulatory capacity on human monocyte-derived dendritic cells (DCs) of selected airway commensal and pathogenic bacteria predominantly associated with lungs of asthma or COPD patients (pathogenic Haemophillus spp. and Moraxella spp.), healthy lungs (commensal Prevotella spp.) or both (commensal Veillonella spp. and Actinomyces spp.). All bacteria were found to induce activation of DCs as demonstrated by similar induction of CD83, CD40 and CD86 surface expression. However, asthma and COPD-associated pathogenic bacteria provoked a 3–5 fold higher production of IL-23, IL-12p70 and IL-10 cytokines compared to the commensal bacteria. Based on the differential cytokine production profiles, the studied airway bacteria could be segregated into three groups (Haemophilus spp. and Moraxella spp. vs. Prevotella spp. and Veillonella spp. vs. Actinomyces spp.) reflecting their pro-inflammatory effects on DCs. Co-culture experiments found that Prevotella spp. were able to reduce Haemophillus influenzae-induced IL-12p70 in DCs, whereas no effect was observed on IL-23 and IL-10 production. This study demonstrates intrinsic differences in DC stimulating properties of bacteria associated with the airway microbiota
    corecore