4,954 research outputs found

    Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation

    Full text link
    Most laser-induced femtosecond magnetism investigations are done in magnetic thin films. Nanostructured magnetic dots, with their reduced dimensionality, present new opportunities for spin manipulation. Here we predict that if a magnetic dot has a dipole-forbidden transition between the lowest occupied molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO), but a dipole-allowed transition between LUMO+1 and HOMO, electromagnetically inducedtransparency can be used to prevent ultrafast laser-induced spin momentum reduction, or spin protection. This is realized through a strong dump pulse to funnel the population into LUMO+1. If the time delay between the pump and dump pulses is longer than 60 fs, a population inversion starts and spin switching is achieved. Thesepredictions are detectable experimentally.Comment: 6 pages, three figur

    Magnetic spin moment reduction in photoexcited ferromagnets through exchange interaction quenching: Beyond the rigid band approximation

    Full text link
    The exchange interaction among electrons is one of the most fundamental quantum mechanical interactions in nature and underlies any magnetic phenomena from ferromagnetic ordering to magnetic storage. The current technology is built upon a thermal or magnetic field, but a frontier is emerging to directly control magnetism using ultrashort laser pulses. However, little is known about the fate of the exchange interaction. Here we report unambiguously that photoexcitation is capable of quenching the exchange interaction in all three 3d3d ferromagnetic metals. The entire process starts with a small number of photoexcited electrons which build up a new and self-destructive potential that collapses the system into a new state with a reduced exchange splitting. The spin moment reduction follows a Bloch-like law as Mz(ΔE)=Mz(0)(1ΔE/ΔE0)1βM_z(\Delta E)=M_z(0)(1-{\Delta E}/{\Delta E_0})^{\frac{1}{\beta}}, where ΔE\Delta E is the absorbed photon energy and β\beta is a scaling exponent. A good agreement is found between the experimental and our theoretical results. Our findings may have a broader implication for dynamic electron correlation effects in laser-excited iron-based superconductors, iron borate, rare-earth orthoferrites, hematites and rare-earth transition metal alloys.Comment: 16 pages, 3 figures, one supplementary material fil

    Generating high-order optical and spin harmonics from ferromagnetic monolayers

    Full text link
    High-order harmonic generation (HHG) in solids has entered a new phase of intensive research, with envisioned band-structure mapping on an ultrashort time scale. This partly benefits from a flurry of new HHG materials discovered, but so far has missed an important group. HHG in magnetic materials should have profound impact on future magnetic storage technology advances. Here we introduce and demonstrate HHG in ferromagnetic monolayers. We find that HHG carries spin information and sensitively depends on the relativistic spin-orbit coupling; and if they are dispersed into the crystal momentum k{\bf k} space, harmonics originating from real transitions can be k{\bf k}-resolved and carry the band structure information. Geometrically, the HHG signal is sensitive to spatial orientations of monolayers. Different from the optical counterpart, the spin HHG, though probably weak, only appears at even orders, a consequence of SU(2) symmetry. Our findings open an unexplored frontier -- magneto-high-order harmonic generation.Comment: 19 pages, 4 figure

    Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

    No full text
    Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol.% f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have great potential applications in multifunctional engineering materials

    Comparing paediatric- and adult-onset linear morphoea in a large tertiary-referral scleroderma centre

    Get PDF
    Background: Linear morphoea is a severe morphoea subtype associated with extracutaneous manifestations, potentially permanent disfigurement and functional impairment. Linear morphoea is more prevalent in paediatric patients, and knowledge of disease in adults is limited. The objective of this study was to compare paediatric- and adult-onset linear morphoea, in an exclusively adult population. / Methodology: This was a retrospective cohort study of adult patients with linear morphoea seen over a 3-year period at a single-site adult tertiary-referral Connective Tissue Disease centre. Clinical markers of disease severity and course, including anatomical distribution, extracutaneous manifestations, cutaneous symptoms, associated autoimmunity, inflammatory blood parameters, Dermatology Life Quality Index scores, treatment requirements and modified Localised Scleroderma Activity Tool were assessed and compared in paediatric- and adult-onset linear morphoea. / Results: Of 298 patients with morphoea seen during the study period, 135 had linear morphoea and 133 were included in the study. Most were female (78.9%), the mean age was 36.5 years and almost half (43.6%) had adult-onset disease. Disease was similarly severe between groups with regard to anatomical distribution, cutaneous symptoms (n = 89, 66.9%), extracutaneous manifestations (n = 76, 57.1%), antinuclear antibody–positivity (n = 40, 40.4%), raised erythrocyte sedimentation rate (n = 27, 25.0%) and associated autoimmune diagnoses (n = 15, 11.3%). Prescribed treatments were similar between groups; 73.7% receiving methotrexate and almost one-third (32.3%) requiring more than one steroid-sparing agent. Those with paediatric-onset had more disease-related damage, with a mean modified Localised Scleroderma Skin Damage Index score of 19.5 (95% confidence interval: 17.0–22.0) versus 8.1 (95% confidence interval: 4.4–11.8; p < 0.001). Significantly more patients with adult-onset linear morphoea had quiescent disease (p = 0.0332), and even after correcting for disease duration, paediatric-onset patients still had 2.6 times greater odds of active disease (odds ratio = 2.59, 95% confidence interval: 0.9–7.6; p = 0.083). / Conclusion: Linear morphoea in adults can be a severe disease with extracutaneous, autoimmune and systemic features. Adults with paediatric-onset disease appear to have more severe cumulative damage, greater functional impairment and ongoing disease activity. This patient subgroup may require particularly close monitoring and more aggressive therapy

    Optogenetic control of iPS cell-derived neurons in 2D and 3D culture systems using channelrhodopsin-2 expression driven by the synapsin-1 and calcium-calmodulin kinase II promoters

    Get PDF
    Development of an optogenetically controllable human neural network model in three-dimensional (3D) cultures can provide an investigative system that is more physiologically relevant and better able to mimic aspects of human brain function. Light-sensitive neurons were generated by transducing channelrhodopsin-2 (ChR2) into human induced pluripotent stem cell (hiPSC) derived neural progenitor cells (Axol) using lentiviruses and cell-type specific promoters. A mixed population of human iPSC-derived cortical neurons, astrocytes and progenitor cells were obtained (Axol-ChR2) upon neural differentiation. Pan-neuronal promoter synapsin-1 (SYN1) and excitatory neuron-specific promoter calcium-calmodulin kinase II (CaMKII) were used to drive reporter gene expression in order to assess the differentiation status of the targeted cells. Expression of ChR2 and characterisation of subpopulations in differentiated Axol-ChR2 cells were evaluated using flow cytometry and immunofluorescent staining. These cells were transferred from 2D culture to 3D alginate hydrogel functionalised with arginine-glycine-aspartate (RGD) and small molecules (Y-27632). Improved RGD-alginate hydrogel was physically characterised and assessed for cell viability to serve as a generic 3D culture system for human pluripotent stem cells (hPSCs) and neuronal cells. Prior to cell encapsulation, neural network activities of Axol-ChR2 cells and primary neurons were investigated using calcium imaging. Results demonstrate that functional activities were successfully achieved through expression of ChR2- by both the CaMKII and SYN1 promoters. The RGD-alginate hydrogel system supports the growth of differentiated Axol-ChR2 cells whilst allowing detection of ChR2 expression upon light stimulation. This allows precise and non-invasive control of human neural networks in 3D

    Development and validation of an empirical equation to predict wet fabric skin surface temperature of thermal manikins

    Get PDF
    Thermal manikins are useful tools to study clothing comfort and environmental ergonomics. The simulation of sweating can be achieved by putting a highly wicking stretchable knit fabric “skin” on top of the manikin. However, the addition of such a fabric skin makes it difficult to accurately measure the skin surface temperature. Moreover, it takes considerable amount of time to measure the fabric skin surface temperature at each test. At present the attachment of temperature sensors to the wet fabric skin is still a challenge. The distance of the sensors to the fabric skin could significantly influence the temperature and relative humidity values of the wet skin surface. Hence, we conducted an intensive skin study on a dry thermal manikin to investigate the relationships among the nude manikin surface temperature, heat losses and the fabric skin surface temperature. An empirical equation was developed and validated on the thermal manikin „Tore‟ at Lund University. The empirical equation at an ambient temperature 34.0 ºC is Tsk =34.00-0.0103HL. This equation can be used to enhance the prediction accuracy of wet fabric skin surface temperature and the calculation of clothing evaporative resistance
    corecore