4,441 research outputs found

    DNAPL source control by reductive dechlorination with iron-based degradative solidification/stabilization

    Get PDF
    Iron-based degradative solidification/stabilization (Fe(II)-DS/S) is a treatment method that could be economically applied to smaller DNAPL-contaminated sites and to those sites with impermeable soils. Reductive dechlorination is achieved by compounds that are formed by reaction of ferrous iron with components of Portland cement or with defined chemicals (FeCl3 + Ca(OH)2). These dechlorinating agents can effectively degrade chlorinated hydrocarbons (PCE, TCE, and 1,1,1-TCA) that are dissolved in aqueous solution. This research investigated the application of Fe(II)-DS/S to remove chlorinated hydrocarbons that are present as DNAPLs in source zones and to compared the reactivity of ferrous iron in different mixtures, including the conventional mixture with cement (Fe(II)+C) and an iron-solid mixture (ISM) that was synthesized without the addition of cement. The modified first-order model, which the rate was proportional to the concentration of target in the aqueous phase and it was also nearly constant when DNAPL was present, was developed to describe dechlorination kinetics. The modified second-order model assumed that the rate was proportional to the product of the concentration of target in the aqueous phase and the concentration of reductive capacity of the solid reductant. The modified first-order model was used to describe degradation of target compounds with ISM, and the modified second-order model was used to describe removals for TCE and 1,1,1-TCA with Fe(II)+C. Results of experiments on PCE dechlorination with ISM indicated that the increase of Fe(II) in ISM increased rate constants and decreased the solubility of targets. The half-life was increased with increasing total PCE concentration. The product analysis implied that degradation of PCE with ISM was via a combination of the hydrogenolysis and β-elimination pathways. A comparison of the types of targets and reductants indicated that Fe(II)+C had better reactivity for chlorinated ethenes (PCE and TCE) than ISM. However, ISM could dechlorinate a chlorinated ethane (1,1,1-TCA) as rapidly as Fe(II)+10%C. The ratio of [RC]o/[Fe(II)]o implied that Fe(II) in Fe(II)+C was more involved in reducing chlorinated ethenes than was Fe(II) in ISM. Dechlorination of a DNAPL mixture followed the same order of reactivity as with individual DNAPLs with both reductants

    Wave Optics by Fourier Transform. Diffractions by Identical 3D Objects

    Get PDF
    The aim of this work is to outline a method for studying wave optics in 3D space based on the well-known properties of the Fourier transform and the Heaviside, Dirac delta functions. Applications for obtaining the amplitudes of diffraction of plane waves by one then by many identical 3D objects utilizing convolution products are given. It results from this study that the forbidden (permitted) diffracted directions caused by an object is the same (altered) for many identical objects. Studies of diffractions of a plane wave k0 by sets of equidistant points, planes, prisms, spheres are given

    A Generalization Bound of Deep Neural Networks for Dependent Data

    Full text link
    Existing generalization bounds for deep neural networks require data to be independent and identically distributed (iid). This assumption may not hold in real-life applications such as evolutionary biology, infectious disease epidemiology, and stock price prediction. This work establishes a generalization bound of feed-forward neural networks for non-stationary ϕ\phi-mixing data

    Exploiting secure performance of full-duplex decode and forward in optimal relay selection networks

    Get PDF
    In the presence of an illegitimate user, we investigate the secrecy outage probability (SOP) of the optimal relay selection (ORS) networks by applying decode-and-forward (DnF) based full-duplex (FD) relaying mode. The closed-form expressions for the allocations of the end-to-end signal-to-interference-plus-noise ratio (SINR) in each wireless network are derived as well as the closed-form expression for the exact SOP of the proposed ORS system is presented under Rayleigh fading schemes. As an important achievement, SOP is also compared between orthogonal multiple access (OMA) and non-orthogonal multiple access (NOMA) schemes. Our results reveal that the SOP of the suggested scheme can be considerably influenced by several parameters involved, including the number of relays, the average signal-to-noise ratio (SNR) of eavesdropper links, transmit power and the average residual self-interference (SI) enforced on the FD relays.Web of Science244767

    Changes of guidelines diagnosing hepatocellular carcinoma during the last ten-year period

    Get PDF
    Hepatocellular carcinoma (HCC) is the third most common cause of cancer deaths in the world. There have been many advances in the diagnosis of HCC during the last ten years, especially in the imaging techniques. The Korean Liver cancer study group (KLCSG), European Association for the Study of the Liver (EASL), American Association for the Study of Liver disease (AASLD), and Asian-Pacific Association for the Study of Liver (APASL) have made and changed the HCC guidelines with the advances in the imaging techniques and according to the results of the researches on HCC. We reviewed the changes of the imaging guidelines in HCC diagnosis according to the advances in the imaging techniques. Further studies will be necessary to resolve the controversies in the diagnosis of HCC smaller than 1 cm in size

    Real-Space Approach for the Electronic Calculation of Twisted Bilayer Graphene Using the Orthogonal Polynomial Technique

    Get PDF
    We discuss technical issues involving the implementation of a computational method for the electronic structure of material systems of arbitrary atomic arrangement. The method is based on the analysis of time evolution of electron states in the real lattice space. The Chebyshev polynomials of the first kind are used to approximate the time evolution operator.  We demonstrate that the developed method is powerful and efficient since the computational scaling law is linear. We invoked the method to study the electronic properties of special twisted bilayer graphene whose atomic structure is quasi-crystalline. We show the density of states of an electron in this graphene system as well as the variation of the associated time auto-correlation function. We find the fluctuation of electron density on the lattice nodes forming a typical pattern closely related to the typical atomic pattern of the quasi-crystalline bilayer graphene configuration
    corecore