18 research outputs found

    Short-term exposure to traffic-related air pollution and daily mortality in London, UK.

    Get PDF
    Epidemiological studies have linked daily concentrations of urban air pollution to mortality, but few have investigated specific traffic sources that can inform abatement policies. We assembled a database of >100 daily, measured and modelled pollutant concentrations characterizing air pollution in London between 2011 and 2012. Based on the analyses of temporal patterns and correlations between the metrics, knowledge of local emission sources and reference to the existing literature, we selected, a priori, markers of traffic pollution: oxides of nitrogen (general traffic); elemental and black carbon (EC/BC) (diesel exhaust); carbon monoxide (petrol exhaust); copper (tyre), zinc (brake) and aluminium (mineral dust). Poisson regression accounting for seasonality and meteorology was used to estimate the percentage change in risk of death associated with an interquartile increment of each pollutant. Associations were generally small with confidence intervals that spanned 0% and tended to be negative for cardiovascular mortality and positive for respiratory mortality. The strongest positive associations were for EC and BC adjusted for particle mass and respiratory mortality, 2.66% (95% confidence interval: 0.11, 5.28) and 2.72% (0.09, 5.42) per 0.8 and 1.0 μg/m(3), respectively. These associations were robust to adjustment for other traffic metrics and regional pollutants, suggesting a degree of specificity with respiratory mortality and diesel exhaust containing EC/BC

    Photo-tautomerization of acetaldehyde as a photochemical source of formic acid in the troposphere

    Get PDF
    Organic acids play a key role in the troposphere, contributing to atmospheric aqueous-phase chemistry, aerosol formation, and precipitation acidity. Atmospheric models currently account for less than half the observed, globally averaged formic acid loading. Here we report that acetaldehyde photo-tautomerizes to vinyl alcohol under atmospherically relevant pressures of nitrogen, in the actinic wavelength range, λ = 300–330 nm, with measured quantum yields of 2–25%. Recent theoretical kinetics studies show hydroxyl-initiated oxidation of vinyl alcohol produces formic acid. Adding these pathways to an atmospheric chemistry box model (Master Chemical Mechanism) demonstrates increased formic acid concentrations by a factor of ~1.7 in the polluted troposphere and a factor of ~3 under pristine conditions. Incorporating this mechanism into the GEOS-Chem 3D global chemical transport model reveals an estimated 7% contribution to worldwide formic acid production, with up to 60% of the total modeled formic acid production over oceans arising from photo-tautomerization

    Distributed urban drag parameterization for sub‐kilometre scale numerical weather prediction

    Get PDF
    A recently developed, height-distributed urban drag parametrization is tested with the London Model, a sub-kilometre resolution version of the Met Office Unified Model over Greater London. The distributed-drag parametrization requires vertical morphology profiles in the form of height-distributed frontal-area functions, which capture the full extent and variability of building heights. London's morphology profiles are calculated and parametrized by an exponential distribution with the ratio of maximum to mean building height as the parameter. A case study evaluates the differences between the new distributed-drag scheme and the current London Model setup using the MORUSES urban land-surface model. The new drag parametrization shows increased horizontal spatial variability in total surface stress, identifying densely built-up areas, high-rise building clusters, parks, and the river. Effects on the wind speed in the lower levels include a lesser gradient and more heterogeneous wind profiles, extended wakes downwind of the city centre, and vertically growing perturbations that suggest the formation of internal boundary layers. The surface sensible heat fluxes are underpredicted, which is attributed to difficulties coupling the distributed momentum exchange with the surface-based heat exchange

    Response of London's urban heat island to a marine air intrusion in an easterly wind regime

    Get PDF
    Numerical simulations are conducted using the Weather Research and Forecast numerical model to examine the effects of a marine air intrusion (including a sea-breeze front), in an easterly wind regime on 7 May 2008, on the structure of London's urban heat island (UHI). A sensitivity study is undertaken to assess how the representation of the urban area of London in the model, with a horizontal grid resolution of 1 km, affects its performance characteristics for the near-surface air temperature, dewpoint depression, and wind fields. No single simulation is found to provide the overall best or worst performance for all the near-surface fields considered. Using a multilayer (rather than single layer or bulk) urban canopy model does not clearly improve the prediction of the intensity of the UHI but it does improve the prediction of its spatial pattern. Providing surface-cover fractions leads to improved predictions of the UHI intensity. The advection of cooler air from the North Sea reduces the intensity of the UHI in the windward suburbs and displaces it several kilometres to the west, in good agreement with observations. Frontal advection across London effectively replaces the air in the urban area. Results indicate that there is a delicate balance between the effects of thermal advection and urbanization on near-surface fields, which depend, inter alia, on the parametrization of the urban canopy and the urban land-cover distribution.Peer reviewedFinal Accepted Versio
    corecore