109 research outputs found

    Constructing a evaluating model for Smartphone Green Design by VAHPand QFD

    Get PDF
    Industry and high-tech industries flourish in the current era. In addition to enhancing quality of life, they have caused plentiful harm to human beings and the environment. Some man-made pollution has destroyed the ecological balance. Environmental protection has thus become everybody’s social responsibility. Many enterprises are beginning to actively concern themselves with sustainable business models and environmental protection issues. After continuous technological development in recent years, many new products have emerged to make human life more convenient. The smartphone is among the most popular of these products. The main aims of this study are to (1) analyze green smartphone requirements of consumers and designers; and (2) construct an assessment framework and checklist for smartphone green design. This study adopts voting analytic hierarchy process (VAHP) and quality function deployment (QFD) and constructs green design criteria through expert interviews

    General approach of causal mediation analysis with causally ordered multiple mediators and survival outcome

    Get PDF
    Causal mediation analysis with multiple mediators (causal multi-mediation analysis) is critical in understanding why an intervention works, especially in medical research. Deriving the path-specific effects (PSEs) of exposure on the outcome through a certain set of mediators can detail the causal mechanism of interest. However, the existing models of causal multi-mediation analysis are usually restricted to partial decomposition, which can only evaluate the cumulative effect of several paths. Moreover, the general form of PSEs for an arbitrary number of mediators has not been proposed. In this study, we provide a generalized definition of PSE for partial decomposition (partPSE) and for complete decomposition, which are extended to the survival outcome. We apply the interventional analogues of PSE (iPSE) for complete decomposition to address the difficulty of non-identifiability. Based on Aalen’s additive hazards model and Cox’s proportional hazards model, we derive the generalized analytic forms and illustrate asymptotic property for both iPSEs and partPSEs for survival outcome. The simulation is conducted to evaluate the performance of estimation in several scenarios. We apply the new methodology to investigate the mechanism of methylation signals on mortality mediated through the expression of three nested genes among lung cancer patients

    Evaluation of Intrarenal Blood Flow by Doppler Ultrasonography Immediately after Extracorporeal Shock Wave Lithotripsy on Hydronephrotic Kidney

    Get PDF
    Extracorporeal shock wave lithotripsy (ESWL) is an effective and relatively noninvasive mode of treatment for urinary calculi. The aim of this study was to test whether therapeutic ESWL induces changes in renal parenchymatous blood flow and to evaluate shock wave side effects on the renal parenchyma. A total of 45 patients who underwent ESWL for ureteropelvic stone between January 2002 and July 2003 were included in this prospective study. Color Doppler sonography before and 30 minutes after ESWL showed no significant morphologic change. Resistive index (RI) was used to estimate renovascular resistance. The RI significantly increased in obstructed hydronephrotic kidneys. However, no significant change was observed in both treated and untreated kidneys before and after treatment. Hydronephrotic kidneys do not have a higher risk of post-ESWL renovascular resistance interference. The measurement of changes in RI with Doppler ultrasonography may provide useful information for clinical diagnosis of renal tubulointerstitial and vascular damage

    Evidence for formation of multi-quantum dots in hydrogenated graphene.

    Get PDF
    We report the experimental evidence for the formation of multi-quantum dots in a hydrogenated single-layer graphene flake. The existence of multi-quantum dots is supported by the low-temperature measurements on a field effect transistor structure device. The resulting Coulomb blockade diamonds shown in the color scale plot together with the number of Coulomb peaks exhibit the characteristics of the so-called 'stochastic Coulomb blockade'. A possible explanation for the formation of the multi-quantum dots, which is not observed in pristine graphene to date, was attributed to the impurities and defects unintentionally decorated on a single-layer graphene flake which was not treated with the thermal annealing process. Graphene multi-quantum dots developed around impurities and defect sites during the hydrogen plasma exposure process.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Probing onset of strong localization and electron-electron interactions with the presence of direct insulator-quantum Hall transition

    Full text link
    We have performed low-temperature transport measurements on a disordered two-dimensional electron system (2DES). Features of the strong localization leading to the quantum Hall effect are observed after the 2DES undergoes a direct insulator-quantum Hall transition with increasing the perpendicular magnetic field. However, such a transition does not correspond to the onset of strong localization. The temperature dependences of the Hall resistivity and Hall conductivity reveal the importance of the electron-electron interaction effects to the observed transition in our study.Comment: 9 pages, 4 figure

    Borders of Cis-Regulatory DNA Sequences Preferentially Harbor the Divergent Transcription Factor Binding Motifs in the Human Genome

    Get PDF
    Changes in cis-regulatory DNA sequences and transcription factor (TF) repertoires provide major sources of phenotypic diversity that shape the evolution of gene regulation in eukaryotes. The DNA-binding specificities of TFs may be diversified or produce new variants in different eukaryotic species. However, it is currently unclear how various levels of divergence in TF DNA-binding specificities or motifs became introduced into the cis-regulatory DNA regions of the genome over evolutionary time. Here, we first estimated the evolutionary divergence levels of TF binding motifs and quantified their occurrence at DNase I-hypersensitive sites. Results from our in silico motif scan and experimentally derived chromatin immunoprecipitation (TF-ChIP) show that the divergent motifs tend to be introduced in the edges of cis-regulatory regions, which is probably accompanied by the expansion of the accessible core of promoter-associated regulatory elements during evolution. We also find that the genes neighboring the expanded cis-regulatory regions with the most divergent motifs are associated with functions like development and morphogenesis. Accordingly, we propose that the accumulation of divergent motifs in the edges of cis-regulatory regions provides a functional mechanism for the evolution of divergent regulatory circuits
    corecore