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Summary 17 

Causal mediation analysis with multiple mediators (causal multi-mediation analysis) is 18 

critical in understanding why an intervention works, especially in medical research. 19 

Deriving the path-specific effects (PSEs) of exposure on the outcome through a certain 20 

set of mediators can detail the causal mechanism of interest. However, the existing 21 

models of causal multi-mediation analysis are usually restricted to partial 22 

decomposition, which can only evaluate the cumulative effect of several paths. 23 

Moreover, the general form of PSEs for an arbitrary number of mediators has not been 24 

proposed. In this study, we provide a generalized definition of PSE for partial 25 

decomposition (partPSE) and for complete decomposition, which are extended to the 26 

survival outcome. We apply the interventional analogues of PSE (iPSE) for complete 27 

decomposition to address the difficulty of non-identifiability. Based on Aalen’s additive 28 

hazards model and Cox’s proportional hazards model, we derive the generalized 29 

analytic forms and illustrate asymptotic property for both iPSEs and partPSEs for 30 

survival outcome. The simulation is conducted to evaluate the performance of 31 

estimation in several scenarios. We apply the new methodology to investigate the 32 

mechanism of methylation signals on mortality mediated through the expression of 33 

three nested genes among lung cancer patients.  34 
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1. Introduction 1 

Causal mediation analysis in the presence of multiple mediators (termed as “causal 2 

multi-mediation analysis” throughout this article) is one of the most powerful methods 3 

to investigate the detailed mechanism of a confirmed causal effect. To explicitly 4 

describe the detailed compositions of this causal mechanism, Avin et al. proposed path-5 

specific effects (PSEs) based on a counterfactual framework to quantify pathways 6 

comprised of mediators of interest (Avin, et al., 2005). However, most PSEs cannot be 7 

nonparametrically identified (Daniel, et al., 2015). Several methods have been 8 

proposed to address the difficulty of non-identifiability, which are summarized in 9 

Figure 1. In settings with K mediators, we categorize the existing approaches into three 10 

groups according to the number of paths to be decomposed: (1) Two-way 11 

decomposition; (2) Partial decomposition; and (3) Complete decomposition. Two-way 12 

decomposition treats all mediators as one unit and decomposes total effect (TE) into the 13 

natural direct and indirect effects rather than detailed PSEs (Fasanelli, et al., 2019; 14 

VanderWeele and Vansteelandt, 2014). Partial decomposition decomposes natural 15 

indirect effects into K (or K+1) paths through each distinct mediator, and can be further 16 

categorized into three subgroups according to different assumptions of causal structure 17 

among mediators: (2.1) partial parallel decomposition, (2.2) partial sequential 18 

decomposition, and (2.3) partial unstructured decomposition. Specifically, partial 19 

parallel decomposition assumes that the multiple mediators are not affected by each 20 

other (Taguri, et al., 2015; Wang, et al., 2013). Partial sequential decomposition 21 

assumes that mediators are causally ordered (Steen, et al., 2017; Vanderweele, et al., 22 

2014). Partial unstructured decomposition does not assume the structure among 23 

mediators and decomposes the joint indirect effect into K separate indirect effect 24 

through each mediator and one indirect effect through the dependence among mediators 25 

(Loh, et al., 2019; Moreno-Betancur, et al., 2019; Vansteelandt and Daniel, 2017). 26 

However, the character of an undefined structure causes that partial unstructured 27 

decomposition cannot explicitly identify the paths of interest in general, which leads to 28 

the difficulty of interpreting the causal mechanism. Complete decomposition (also 29 

termed full or finest decomposition) decomposes TE into all 2  PSEs, most of which 30 

are unidentified. Two choices are available: (3.1) sensitivity analysis approach and (3.2) 31 

complete interventional approach. Sensitivity analysis approach evaluates the boundary 32 

of PSE (Albert, et al., 2019; Daniel, et al., 2015), while interventional approach 33 

proposed a randomized interventional analogues of PSE (iPSE) (Lin and VanderWeele, 34 

2017). The typical interventional approach has been widely used for settings with one 35 

mediator (Didelez, et al., 2012; Geneletti, 2007; Vanderweele, et al., 2014), time-36 

varying mediators (Lin, et al., 2017; Lin, et al., 2017; VanderWeele and Tchetgen 37 
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Tchetgen, 2017; Zheng and van der Laan, 2012), and multiple mediator with partial 1 

decomposition (Moreno-Betancur, et al., 2019; Vansteelandt and Daniel, 2017). 2 

In terms of the survival framework, the method involving one mediator was first 3 

proposed by Lange and Hansen based on additive hazard model (Lange and Hansen, 4 

2011). VanderWeele extended Lange and Hansen’s approach using both the Cox’s 5 

proportional hazards model and the accelerated failure time model with a rare disease 6 

assumption (VanderWeele, 2011), while Tchetgen and Shpitser proposed a more general 7 

semiparametric approach (Tchetgen and Shpitser, 2012). Several methods have been 8 

proposed for scenarios with two or three causally ordered multiple mediators (Cho and 9 

Huang, 2019; Fasanelli, et al., 2019; Huang and Yang, 2017; Huang and Cai, 2015; Yu, 10 

et al., 2019). Although these studies specifically derived the analytic form of PSEs for 11 

survival outcome, two issues have not been fully addressed yet. First, due to the 12 

exponential increase in the number of PSEs along with the number of mediators, the 13 

existing methods only allow a small number of mediators (Figure1). A general form of 14 

PSE with an arbitrary number of mediators is necessary for a wide application in 15 

general cases. Second, the existing approaches for survival outcome mainly focus on 16 

partial decomposition which only estimates the cumulative effect of several paths. A 17 

complete decomposition of each path is necessary for the comprehensive understanding 18 

of the causal mechanism. Furthermore, the existing methods need to assume no time-19 

varying confounders, which restricts the utility of these methods on longitudinal data. 20 

To address the issues mentioned above, this study proposes a generalized 21 

framework for causal multi-mediation analysis via both partial sequential 22 

decomposition and complete interventional approach, especially for the survival 23 

outcome. For simplicity, we name partial sequential decomposition as partial 24 

decomposition approach and name complete interventional approach as interventional 25 

approach in the following paragraphs and sections. There are two contributions in this 26 

study. First, we propose comprehensive definitions of partial decomposition and 27 

interventional approaches, under which a generalized form of PSE with an arbitrary 28 

number of mediators has been provided. Second, we extend partial decomposition and 29 

interventional approaches into the context of survival analysis. We demonstrate the 30 

mediation parameters of interest perform a g-formula while mediators are weighted by 31 

a normally distributed variable when all mediators are continuous and normally 32 

distributed. The parameters can be viewed as a general form of a series of previous 33 

works in this topic (Cho and Huang, 2019; Huang and Yang, 2017; VanderWeele, 2011; 34 

Yu, et al., 2019).  35 

The remainder of this paper is organized as follows. In Section 2, we introduce 36 

notations and definition for causal multi-mediation analysis under partial 37 
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decomposition and interventional approaches for the setting with an arbitrary number 1 

of mediators and any types of outcomes. In Section 3, we derive the estimators in terms 2 

of survival analysis by using Aalen’s additive hazards model and Cox’s proportional 3 

hazards model. In Section 4, we demonstrate the asymptotic properties. In Section 5, 4 

we provide the simulation results in different scenarios to demonstrate the performance 5 

of estimation. In Section 6, we illustrate an application to investigate the mechanism of 6 

methylation signals on mortality through the transcriptional activity of several genes 7 

which are nested to each other. We discuss the strength and limitations in Section 7. 8 

2. Generalized framework of causal multi-mediation analysis 9 

In this section, we first provide the generalized definition of PSEs for any types of 10 

outcome variables. Since PSEs cannot be nonparametrically identified, interventional 11 

approach for completely decomposing all PSEs and partial decomposition approach 12 

without changing the PSE definition are used to address this issue. The corresponding 13 

identification processes and the required assumptions will also be demonstrated. 14 

2.1. Notation, parameter of interest in ordered multiple mediators, and 15 

difficulties 16 

To simplify the notation, we denote 𝑉 , 𝑉 ,𝑉 , … ,𝑉  as a subvector 17 

of a vector V where 𝑖   and 𝑖   are two nonnegative integers satisfied 𝑖 𝑖  ; we 18 

further define 𝑉 ,  𝑣   for 𝑖 𝑖 𝑖 , and 𝑉 ,   a null vector for 𝑖 𝑖  . 19 

Furthermore, we use 𝑉 : ;   to denote 𝑉 , , … ,𝑉 ,𝑉 , … ,𝑉  . Let 𝐾  denotes 20 

the number of mediators, 𝐴  the exposure, 𝑀 𝑀 :   the causally ordered 21 

mediators, 𝑌 the outcome, 𝐶  the baseline confounders, and 𝐶 𝐶 :  the time-22 

varying confounders. 𝐶  represents the k-th confounders among the k-th mediator 𝑀  23 

and 𝑌 which occurs after and is potentially affected by 𝑀  and the other previous 24 

variables for 𝑘 ∈ 1,2, … ,𝐾 . The causal relationship among all variables is illustrated 25 

by a directed acyclic graph (DAG) in Figure 2. 26 

In the counterfactual framework, 𝑌 𝑎,𝑚 ,   represents the counterfactual 27 

value of 𝑌  suppose 𝐴,𝑀 ,   is set to 𝑎,𝑚 ,  . Let 𝑀 𝑎,𝑚 ,   be the 28 

counterfactual value of 𝑀   suppose 𝐴,𝑀 ,   is set to 𝑎,𝑚 ,   for 𝑘 ∈29 

1, 2, … ,𝐾   (Robins, 1986). Furthermore, we assume consistency (Pearl, 2009; 30 

VanderWeele and Vansteelandt, 2009; VanderWeele, 2009), under which 𝑌 𝑎,𝑚 ,  31 

is equal to the observed 𝑌 if 𝐴,𝑀 ,  is equal to 𝑎,𝑚 ,  and 𝑀 𝑎,𝑚 ,  32 

is equal to the observed 𝑀   if 𝐴,𝑀 ,   is equal to 𝑎,𝑚 ,   for 𝑘 ∈33 

1, 2, … ,𝐾 . 34 

Since the number of PSEs increases exponentially ( 2  ) according to the 35 

involvement of 𝑀 , , a definition system is required for a generalized setting. We 36 
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propose a comprehensive coding system for notation simplification and define PSEs. 1 

In the setting with K ordered mediators, a set of all paths is defined as 2 

𝐿  𝑙 𝐼 𝑀 , … , 𝐼 𝑀  | 3 

𝑑 ∑ 𝐼 𝑀 2 1 , 𝐼 𝑀 ∈ 0,1   for  𝑘 1, … ,𝐾 ,  4 

where 𝐼 𝑀 1 represents the path 𝑙  passing through the k-th mediator, 𝑀 . For 5 

simplicity, each path 𝑙 𝐼 𝑀1 , … , 𝐼 𝑀𝐾   in 𝐿  is numbered as d, which is an 6 

integer converted by a one-to-one converted function 𝜉  , which is defined as 7 

𝜉 𝐼 𝑀 , … , 𝐼 𝑀 ∑ 𝐼 𝑀 2 1 . Each converted number (i.e. d) is 8 

specifically mapped to one path. On the basis of these converted numbers, PSE can be 9 

qualitatively defined as a function of the converted number as follows: 10 

Definition 1 (Qualitative definition of Path-Specific Effect, PSE 𝑑 ).  11 

For K mediators, PSE 𝑑  represents the path-specific effect with respect to the path 12 

𝑙 𝐼 𝑀1 , … , 𝐼 𝑀𝐾  , where 𝑑 ∈ 1,2,3, … , 2   and 𝐼 𝑀 1  represents the 13 

path 𝑙  passing through the k-th mediator, 𝑀 . 14 

In additional to the qualitative definition, the PSE 𝑑   is needed to be 15 

quantitatively defined under counterfactual model. Before this, we must define 16 

“iterative counterfactual mediators” and “multi-mediation parameter” as Definition 2 17 

and Definition 3, respectively, for simplifying the notation. 18 

Definition 2 (Iterative counterfactual mediators, 𝑀∗ 𝑎 , ). 19 

For 𝑘 1 , 𝑀∗ 𝑎   ≡  𝑀 𝑎  , which is the counterfactual value of 𝑀   suppose 𝐴 𝑎  . 20 
For 𝑘 ∈ 2, … ,𝐾  , let 𝑀∗ 𝑎 , ≡ 𝑀 𝑎 ,𝑀∗ 𝑎 , … ,𝑀∗ 𝑎 ,  , which is 21 

the counterfactual value of 𝑀   suppose 𝐴,𝑀 ,   is set to 22 
𝑎 ,𝑀∗ 𝑎 , … ,𝑀∗ 𝑎 , . For any 𝑘 ∈ 1, … ,𝐾 , 𝑀∗ is a function of 𝑎 , . 23 

On the basis of Definition 2, we can further define multi-mediation parameter in a 24 

general form as Definition 3.  25 

Definition 3. (Multi-mediation parameter 𝜗 𝑎 , |𝑊 ) 26 

𝜗 𝑎 , |𝑊 ≡ 𝐸 𝑊 𝑌 𝑎 ,𝑀∗ 𝑎 ,𝑀∗ 𝑎 ,𝑎 , … ,𝑀∗ 𝑎 ,  27 

where 𝑊 ∙  is a transfer function.  28 

Typically, we consider the identity function as the transfer function 𝑊 𝑥 𝑥  29 

in the case of studying time-independent outcome, and thus, the multi-mediation 30 

parameter in Definition 3 is simplified as the expectation of the counterfactual outcome 31 

suppose that 𝐴,𝑀 ,   is set to 𝑎 ,𝑀∗ 𝑎 ,𝑀∗ 𝑎 ,𝑎 , … ,𝑀∗ 𝑎 ,  . 32 

Additionally, for survival outcome, the transfer function is specified as an indicator 33 

function with respect to the time variable t 𝑊 𝑥 𝐼 𝑥 𝑡 , and subsequently, the 34 
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𝜗 𝑎 , |𝑊  can be rewritten as the survival function of the counterfactual outcome. 1 

Based on Definitions 2 and 3, we can use 𝜗 to quantitatively define PSE.  2 

Definition 4. (Quantitative definition of PSE) 3 

𝑃𝑆𝐸 𝑑,𝑎 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊  4 

≡ 𝑄 𝜗 𝑎 : ,𝑎∗ ,𝑎 : |𝑊 ,𝜗 𝑎 : ,𝑎∗ ,𝑎 : |𝑊 , 5 

where 𝑄 ∙  is a nonspecific comparative function. 6 

In Definition 4, 𝑃𝑆𝐸 𝑑, 𝑎 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊   is defined in terms of the 7 

change of  𝜗   by changing the value of 𝑎   from 𝑎∗   to 𝑎∗   when all other 8 

variables are fixed as 𝑎 : ;  , and the definition of multi-mediation parameters 9 

guarantees that the influence of changing 𝑎  reflects the effect of the exposure on the 10 

outcome through the d-th path. The interpretation of 𝑃𝑆𝐸 𝑑,𝑎 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊  11 

is determined by 𝑄 𝑥 , 𝑥  . For example, if Y is a binary variable and 𝑊 𝑥 𝑥 , 12 

three types of 𝑄 𝑥 , 𝑥  are commonly used in medical research:  13 

(1) 𝑄 x , x x x  for the risk difference scale,  14 

(2) 𝑄 x , x x /x  for the risk ratio scale, and  15 

(3) 𝑄 x , x /     for the odds ratio scale.  16 

Furthermore, when Y is the survival time and 𝑊 𝑥 𝐼 𝑥 𝑡 , the causal effect of 17 

interest is usually defined on the hazard function, and the corresponding comparative 18 

functions are formulated as  19 

(4) 𝑄 x 𝑡 , x 𝑡 /  𝜆 𝑡 /𝜆 𝑡  for the hazard ratio scale, and 20 

(5) 𝑄 x 𝑡 , x 𝑡 𝜆 𝑡 𝜆 𝑡  for the hazard difference scale,  21 

in which x 𝑡  and x 𝑡  are two survival functions, and 𝜆 𝑡  and 𝜆 𝑡  are the 22 
corresponding hazard functions. For simplicity, we use 𝑄 x , x x x  23 
throughout Section 2.  24 

Although 𝑎 : ;  can take any values in Definition 4, Denial et al. concluded 25 

that there are only 2 ! ways of decomposing the total effect into PSEs (Daniel, et 26 

al., 2015). Following previous works (Lin and VanderWeele, 2017; Wang, et al., 2013), 27 

we use one of the ways to specify PSE, and the expression is shown as follows: 28 

Definition 5. (PSE for decomposition of TE). 29 

𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝑊 ≡ 𝜗 𝑎∗ ,𝑎∗ |𝑊 𝜗 𝑎∗ ,𝑎∗ |𝑊  30 

𝑇𝐸 𝑎∗ ,𝑎∗ |𝑊 ≡ ∑ 𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝑊   31 

where 𝑎∗  and 𝑎∗  represents a vector composed by 𝑎∗  and 𝑎∗  with length i, 32 

respectively. Here 𝑇𝐸 𝑎 1
∗ , 𝑎 0

∗ |𝑊𝑡  is equal to 𝐸 𝑊 𝑌 𝑎∗ 𝐸 𝑊 𝑌 𝑎∗  by 33 

consistency, which is the traditional counterfactual definition of the causal effect of A 34 

on Y with two levels 𝑎∗  and 𝑎∗ .  35 
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Two issues merit to be noticed. First, if there is one mediator (i.e. K=1), PSE 1  1 

and PSE 2   are exactly the same as natural direct effect and indirect effect, 2 

respectively, defined by Robins and Greenland (Robins and Greenland, 1992). Second, 3 

it is the same as the concept of PSE proposed by Avin (Avin, et al., 2005), but we here 4 

propose a notation and framework which is suitable for the cases with any arbitrary 5 

number of ordered multiple mediators. However, as noted by Avin et al, 6 

𝜗 𝑎 , |𝑊   as well as most PSEs are not identifiable under conventional 7 

assumptions (Avin, et al., 2005; Vanderweele, et al., 2014). Two approaches are 8 

available to address this issue. First, we can use the interventional approach adopting 9 

an alternative definition instead of traditional PSE for effect decomposition. This 10 

definition has been widely used in natural direct and indirect effects with time-varying 11 

confounders (Lin, et al., 2017; VanderWeele and Tchetgen Tchetgen, 2017; 12 

VanderWeele and Vansteelandt, 2014), and have been extended to the settings with 13 

ordered multiple mediators (Lin and VanderWeele, 2017). We will review this approach 14 

in Section 2.2. The second approach is to partially decompose the total effect into K+1 15 

paths, instead completely decompose the total effect into 2K PSE. This method is 16 

commonly adapted by researchers for two or three mediators. We will propose a general 17 

form for any arbitrary number of mediators in Section 2.3. 18 

2.2. Approach 1: interventional approach based on randomized interven-19 

tional analogue of path-specific effect (iPSE) 20 

Before defining the iPSE, we must define “conditional iterative random draw of 21 

counterfactual mediators” and a “interventional multi-mediation parameter” in advance, 22 

as Definition 2.a and Definition 3.a. 23 

Definition 2.a. (Conditional iterative random draw of counterfactual mediators, 𝐺 𝑎 , ) 24 

All definitions are conditional on baseline confounders 𝐶 . 𝐺 𝑎  is a random draw of 25 

𝑀 𝑎  . 𝐺 𝑎 ,𝑎   is a random draw of 𝑀 𝑎 ,𝐺 𝑎  , which is the counterfactual 26 

value of 𝑀  suppose  𝐴,𝑀  is set to 𝑎 ,𝐺 𝑎 . Consequently, for 𝑘 ∈ 3, … ,𝐾 , 27 

let 𝐺 𝑎 ,  be a random draw of 𝑀 𝑎 ,𝐺 𝑎 , … ,𝐺 𝑎 , , which is 28 

the counterfactual value of 𝑀   suppose 𝐴,𝑀 ,   is set to 29 

𝑎 ,𝐺 𝑎 , … ,𝐺 𝑎 , . For any 𝑘 ∈ 1, … ,𝐾 , 𝐺  is a function of 𝑎 , . 30 

On the basis of Definition 2.a, we can further define multi-mediation parameters in an 31 

interventional form as Definition 3.a.  32 

Definition 3.a. (Interventional multi-mediation parameter 𝜑 𝑎 , |𝑊 ) 33 

𝜑 𝑎 , |𝑊 ≡ 𝐸 𝑊 𝑌 𝑎 ,𝐺 𝑎 ,𝐺 𝑎 ,𝑎 , … ,𝐺 𝑎 , . 34 

Similar to Definition 3, the transfer function can be specified as the identity function 35 
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for the time-independent outcome or the indicator function with respect to time t for 1 

survival outcome. As the result, the interventional multi-mediation parameter in 2 

Definition 3.a is the expectation of a transferred counterfactual outcome suppose that 3 

𝐴,𝑀 ,  is set to 𝑎 ,𝐺 𝑎 ,𝐺 𝑎 ,𝑎 , … ,𝐺 𝑎 , . Next, we can use 4 

𝜑 to define iPSE.  5 

Definition 4.a. (Randomized interventional analogue of path-specific effect (iPSE)) 6 

𝑖𝑃𝑆𝐸 𝑑, 𝑎 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊  7 

≡ 𝑄 𝜑 𝑎 : ,𝑎∗ ,𝑎 : |𝑊 ,𝜑 𝑎 : ,𝑎∗ ,𝑎 : |𝑊 , 8 

𝑖𝑃𝑆𝐸 𝑑, 𝑎 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊   is defined in terms of the change of  𝜑   by 9 

changing the value of 𝑎   from 𝑎∗   to 𝑎∗   when all other variables are fixed as 10 

𝑎  . Similar to Definition 5, we specify iPSE using the following expression for 11 

convenience of decomposition and define the randomized interventional analogue of 12 

total effect (iTE): 13 

Definition 5.a. (iPSE for decomposition of iTE). 14 

𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝑊 ≡ 𝜑 𝑎∗ ,𝑎∗ |𝑊 𝜑 𝑎∗ ,𝑎∗ |𝑊  15 

𝑖𝑇𝐸 𝑎∗ ,𝑎∗ |𝑊 ≡ ∑ 𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝑊   16 

2.3. Approach 2: Partial decomposition approach 17 

 Although the interventional approach can provide completely decomposition with 18 

2K paths, three limitations merit to be noticed. First, the definition of iPSE, although 19 

obtains the essence of PSE, still deviates from the traditional definition. Second, the 20 

sum of iPSE is also the analogue of total effect (iTE), instead a real one. Third, the 21 

interpretation of the definition based on iterative random draw is complicated. 22 

Therefore, some researchers prefer to keen the original definition of PSE. As a trade-23 

off, the effect can only be partially decomposed into K+1 paths, instead of 2K. The 24 

effects corresponding to these paths are termed partPSEs through this article and are 25 

exactly the sum of several non-identified PSEs. In previous literature, this partial 26 

decomposition has been applied to two or three mediators (Cho and Huang, 2019; 27 

Huang and Yang, 2017; Huang and Cai, 2015). An interventional analogue has been 28 

proposed (Moreno-Betancur and Carlin, 2018; Vansteelandt and Daniel, 2017). In this 29 

study, we propose a general definition for partial PSEs. We will identify the partial PSEs 30 

and discuss the assumption required for identification in Section 2.4. Similarly, we first 31 

define “Nested iterative counterfactual mediators” and a “partial multi-mediation 32 

parameter” as Definition 2.b and Definition 3.b, for simplifying the notation.  33 

Definition 2.b. (Nested iterative counterfactual mediators, 𝑀 𝑒 , ). 34 
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𝑀 𝑒  ≡ 𝑀 𝑒 . For 𝑘 ∈ 2, … ,𝐾 , let 𝑀 𝑒 , ≡ 𝑀 𝑒 ,𝑀 𝑒 , … ,𝑀 𝑒 , , 1 
which is the counterfactual value of 𝑀   suppose 𝐴,𝑀 ,   is set to 2 

𝑒 ,𝑀 𝑒 , … ,𝑀 𝑒 , . For any 𝑘 ∈ 1, … ,𝐾 , 𝑀  is a function of 𝑒 , . 3 

On the basis of Definition 2.b, we can further define partial multi-mediation parameter 4 

in a general form as Definition 3.b.  5 

Definition 3.b. (Partial multi-mediation parameter 𝜓 𝑎 , 𝑒 , |𝑊 ) 6 

𝜓 𝑎 , 𝑒 , |𝑊 ≡ 𝐸 𝑊 𝑌 𝑎 ,𝑀 𝑒 ,𝑀 𝑒 , ,𝑀 𝑒 , , … ,𝑀 𝑒 ,  7 

where 𝑊  is a transfer function.  8 

Definition 3.b implies that the partial multi-mediation parameter represents the 9 

cumulative effect of multiple paths, while the interventional multi-mediation parameter 10 

in Definition 3.a can be used to quantity each path. In Section 3, we provide a theorem 11 

to detail the relationship between partial PSE and interventional PSE in terms of 12 

survival analysis when analytical estimators are available. We next use the partial multi-13 

mediation parameter in Definition 3.b to define the partPSE. 14 

Definition 4.b. (Partial path-specific effect (partPSE)) 15 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 0, 𝑒 , ,𝑎∗ ,𝑎∗ |𝑄,𝑊 ≡  𝑄 𝜓 𝑎∗ , 𝑒 , |𝑊 𝜓 𝑎∗ , 𝑒 , |𝑊  16 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑒 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊  17 

≡ 𝑄 𝜓 𝑎 , 𝑒 , ,𝑎∗ , 𝑒 , |𝑊 𝜓 𝑎 , 𝑒 , ,𝑎∗ , 𝑒 , |𝑊  18 

for 𝑔 ∈ 1, … ,𝐾 , where 𝑄 ∙  a nonspecific comparative function. 19 

In Definition 4.b, 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑒 : ; ,𝑎∗ ,𝑎∗ |𝑄,𝑊  is defined in terms of 20 

the change of ψ   by changing the value of 𝑒   from 𝑎∗   to 𝑎∗   when all other 21 

variables are fixed as 𝑒 : ;  , and the definition of multi-mediation parameters 22 

guarantees that the influence of changing 𝑒  reflects the effect of the exposure on the 23 

outcome through 𝑀 , which includes all path passing or not the following mediators 24 

(𝑀 , ), but not through the previous mediators (i.e. 𝑀 , ). Similarly, we further 25 

specify the value of (𝑎 , 𝑒 , ) for all partPSEs in order to ensure that the sum is equal 26 

to TE as follows: 27 

Definition 5.b. (partPSE for decomposition of TE). 28 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 0,𝑎∗ ,𝑎∗ |𝑊 ≡  𝜓 𝑎∗ ,𝑎∗ |𝑊 𝜓 𝑎∗ ,𝑎∗ |𝑊  29 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔,𝑎∗ ,𝑎∗ |𝑊30 

≡ 𝜓 𝑎∗ , 𝑎∗ ,𝑎∗ |𝑊 𝜓 𝑎∗ , 𝑎∗ ,𝑎∗ |𝑊  31 

for 𝑔 0 , As a result, the sum of all partPSE will equal to total effect, i.e. 32 
∑ 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑎∗ ,𝑎∗ |𝑊 TE by consistency. 33 
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2.4. Identification 1 

In this section, we discuss the identification process and the required assumption 2 

for iPSE and partPSE. For PSE, four assumptions are required: 3 

Assumption 1. Unconfoundedness among exposure and outcome.  4 
𝑌 𝑎,𝑚 , ⫫ 𝐴|𝐶  5 

Assumption 2. Unconfoundedness among mediators and outcome. 6 
𝑌 𝑎,𝑚 , ⫫ 𝑀 𝐶 , ,𝐴,𝑀 ,  for 𝑘 ∈ 1,2, … ,𝐾  7 

Assumption 3. Unconfoundedness among exposure and mediators. 8 
𝑀 𝑎,𝑚 , ⫫ 𝐴|𝐶  for 𝑘 ∈ 1,2, … ,𝐾  9 

Assumption 4. Unconfoundedness among mediators. 10 
𝑀 𝑎,𝑚 , ⫫ 𝑀 𝐶 , ,𝐴,𝑀 ,  for 𝑗 ∈ 1,2, … , 𝑘 1  and 𝑘 ∈ 2, … ,𝐾  11 

Under consistency assumption and Assumptions 1 to 4, interventional multi-12 

mediation parameter can be identified as  13 

𝜑 𝑎 , |𝑊   14 

𝐸 𝑊 𝑌 𝑎 ,𝑚 , |𝑐 ∏ 𝑑𝐹
,

| 𝑚 |𝑐
,

𝑑𝐹 𝑐   15 

𝛤 𝑐 ,𝑎 ,𝑚 , |𝑊 ∏ 𝐻 𝑚 ,𝑎 , , 𝑐
,

𝑑𝐹 𝑐 . (1) 16 

where 𝛤 𝑐 , 𝑎 ,𝑚 , |𝑊   17 

𝐸 𝑊 𝑌 𝑎 , 𝑐 , ,𝑚 ,
,

∏ 𝑑𝐹
, , , ,

𝑐 𝑐 , ,𝑎 ,𝑚 ,  18 

and 𝐻 𝑚 ,𝑎 , , 𝑐   19 

𝑑𝐹 | , , , ,
𝑚 𝑎 ,𝑚 , , 𝑐 ,

,,
  20 

∏ 𝑑𝐹 , , , ,
𝑐 𝑎 ,𝑚 , , 𝑐 ,   21 

∏ 𝐻 𝑚 ,𝑎 , , 𝑐   22 

The details about the identification process and Assumptions 1 to 4 have been described 23 

in previous literature (Lin and VanderWeele, 2017).  24 

Compared with iPSE, partPSE required two extra assumptions for identification:   25 

Assumption 5. Confounders among mediators and outcome is not affected by previous 26 
covariates. 27 

𝑌 𝑎,𝑚 , ⫫ 𝑀 𝑒 ,𝑀 𝑒 ,𝑚 , … ,𝑀 𝑒 ,𝑚 , |𝐶  28 

Assumption 6. Confounders among mediators is not affected by previous covariates. 29 
𝑀 𝑒 ,𝑚 , ⫫ 𝑀 𝑒 ,𝑀 𝑒 ,𝑚 , … ,𝑀 𝑒 ,𝑚 , |𝐶  for 𝑘 ∈ 2, … ,𝐾  30 

 31 

Since the presence of time-varying confounders 𝐶 ,  conflicts with Assumptions 5 32 

and 6, an assumption of no time-varying confounders is further required for the 33 

identification of partPSE. Details about Assumptions 5 and 6 will be illustrated in 34 

Appendix Sections 1.1 and 1.2.  35 

Under consistency assumption and Assumptions 1 to 6, partial multi-mediation 36 
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parameter 𝜓 𝑎 , 𝑒 , |𝑊  is identified as  1 

𝜓 𝑎 , 𝑒 , |𝑊  2 

𝐸 𝑊 𝑌 𝑎 ,𝑚 , |𝐶 𝑐, ,
∏ 𝑑𝐹 , , | 𝑚 |𝑐 𝑑𝐹 𝑐   3 

𝐸 𝑊 𝑌 𝑎 , 𝑐 ,𝑚 ,, ,
∏ 𝑑𝐹 , , ,

𝑚 𝑐 , 𝑒 ,𝑚 , 𝑑𝐹 𝑐   (2) 4 

The identification of (2) is shown in Appendix Section 1.3. If we assume previous 5 

mediator will not affect the following mediator, the partial multi-mediation parameter 6 

can be rewritten as 7 

𝜓 𝑎1,𝑒 1,𝐾 |𝑊𝑡   8 

𝐸 𝑊 𝑌 𝑎 ,𝑚 , |𝐶 𝑐, ,
∏ 𝑑𝐹 | 𝑚 |𝑐 𝑑𝐹 𝑐   9 

𝐸 𝑊 𝑌 𝑎 , 𝑐 ,𝑚 ,, ,
∏ 𝑑𝐹 | , 𝑚 |𝑐 , 𝑒 𝑑𝐹 𝑐    (3) 10 

Formula (3) is exactly the multi-mediation parameter under paralleled mediators used 11 

by previous literatures (Taguri, et al., 2015; Wang, et al., 2013). Therefore, we conclude 12 

that the paralleled multi-mediation parameter is a special case of the partial multi-13 

mediation parameter. Two multi-mediation parameters (2) and (3) are decomposing a 14 

total causal effect into K+1 pathways.  15 

Assumptions 5 and 6 hinge the time-varying confounders even if all these 16 

confounders are collected. It is likely to be violated if the time period of all multiple 17 

mediators is long. In addition, as mentioned previously, partPSE cannot completely 18 

decompose the effect into 2K paths. That is the trade-off to keep traditional definition. 19 

In cases of one mediator, the interventional analogue of natural direct and indirect 20 

effects will reduce to its standard definition when mediator-outcome confounders are 21 

not affected by exposure (Vanderweele, et al., 2014), even under time-varying settings 22 

(VanderWeele and Tchetgen Tchetgen, 2017). By contrast, for multiple mediators 23 

without model assumptions, iPSE is not a general form of partPSE, even if time-varying 24 

confounders are absent. Given parametric models for outcome and mediators, the 25 

partPSE can be decomposed into several iPSEs, and the detail is shown in Section 3. 26 

2.5. Definition of PSE for survival outcome 27 

In Section 2.5 and what follows, we focus on the context when survival time is the 28 

outcome of interest (i.e 𝑌 ≡ T ). We applied Approaches 1 and 2 to define PSE for 29 

survival outcome, separately. Before deriving PSE, the multi-mediation parameters in 30 

Definition 3.a and Definition 3.b are reformed as the survival functions of the 31 

counterfactual outcome. More specifically, given 𝑊 𝑥 𝐼 𝑥 𝑡 , equations (1) and 32 

(2) can be rewritten as 33 

𝜑 𝑎 , ; 𝑡  ≡  𝜑 𝑎 , |𝑊 𝐼 𝑥 𝑡  34 

         𝛤𝑆 𝑐0,𝑎1,𝑚 1,𝐾 ; 𝑡 ∏ 𝐻𝑘 𝑚𝑘,𝑎 2𝑘 1 1,2𝑘 , 𝑐
,

𝑑𝐹 𝑐 , (4) 35 

where  36 

𝛤 𝑐 , 𝑎 ,𝑚 , ; 𝑡 ≡ 𝛤 𝑐 ,𝑎 ,𝑚 , |𝑊 𝐼 𝑥 𝑡  37 
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𝑆 𝑡 𝑎 , 𝑐 , ,𝑚 ,
,

∏ 𝑑𝐹
, , , ,

𝑐 𝑐 , ,𝑎 ,𝑚 ,   1 

and 2 

𝜓 𝑎 , 𝑒 , ; 𝑡  ≡  𝜓 𝑎 , 𝑒 , |𝑊 𝐼 𝑥 𝑡   3 

𝑆 𝑡 𝑎 , 𝑐 ,𝑚 ,, ,
∏ 𝑑𝐹 , , ,

𝑚 𝑐 , 𝑒 ,𝑚 , 𝑑𝐹 𝑐  4 

 (5) 5 

𝑆 𝑡   is the survival function with respect to survival outcome Y, and 6 

𝜓 𝑎 , 𝑒 , ; 𝑡   and 𝜑 𝑎 , ; 𝑡   are exactly the survival function of the 7 

counterfactual outcome by the definition. Let 𝜆 𝑡  is the hazard function of Y. We 8 
can define the corresponding hazard functions of the counterfactual outcome as  9 

𝜆 𝑎 , ; 𝑡  ≡ 𝜆 , , , ,…, ,
𝑡  ≡

,
; /

, ;
, and 10 

𝜆 𝑎 , 𝑒 , ; 𝑡  ≡ 𝜆 , , , ,…, ,
𝑡  ≡

,
; /

, ;
. 11 

 (6) 12 

Since the counterfactual survival function are identified above, we can subsequently 13 

obtain the identified hazard functions in (6) by plugging the formulas of (4) and (5). 14 

Based on hazard functions, iPSE and partPSE in the hazard difference (HD) scale, 15 

termed iPSE  and partPSE , are defined as follows:     16 

𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗  17 

𝜆 𝑎 , 𝑎∗ ,𝑎∗ ; 𝑡 𝜆 𝑎 , 𝑎∗ ,𝑎∗ ; 𝑡  18 

for 𝑑 ∈ 1, … , 2 , and  19 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔,𝑎∗ ,𝑎∗  20 

 𝐼 𝜆 𝑎 𝑎∗ , 𝑒 , ; 𝑡 𝜆 𝑎 𝑎∗ , 𝑒 , ; 𝑡  21 

 𝐼 𝜆 𝑎 , 𝑒 , 𝑎∗ ,𝑎∗ ; 𝑡 𝜆 𝑎 , 𝑒 , 𝑎∗ ,𝑎∗ ; 𝑡   22 

for 𝑔 ∈ 0, … ,𝐾  23 
 (7) 24 

where 𝐼  and 𝐼  are indicator functions for 𝑔 0 and 𝑔 0, respectively. 25 

Similarly, for the log transformed hazard ratio (HR) scale, iPSE and partPSE can be 26 

defined as follows: 27 

𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗  28 

𝑙𝑜𝑔 𝜆 𝑎 , 𝑎∗ ,𝑎∗ ; 𝑡 𝑙𝑜𝑔 𝜆 𝑎 , 𝑎∗ ,𝑎∗ ; 𝑡  29 

for 𝑑 ∈ 1, … , 2  and, 30 
𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔,𝑎∗ ,𝑎∗  31 

𝐼 𝑙𝑜𝑔 𝜆 𝑎 𝑎∗ , 𝑒 , ; 𝑡 𝑙𝑜𝑔 𝜆 𝑎 𝑎∗ , 𝑒 , ; 𝑡   32 

𝐼 𝑙𝑜𝑔 𝜆 𝑎 , 𝑒 , 𝑎∗ ,𝑎∗ ; 𝑡33 

𝑙𝑜𝑔 𝜆 𝑎 , 𝑒 , 𝑎∗ ,𝑎∗ ; 𝑡   34 

for 𝑔 ∈ 0, … ,𝐾 . 35 
 (8) 36 



13 
 

3. Estimation for PSE with survival outcome 1 

In this section, we applied Aalen’s additive hazards model to derive PSE in HD 2 

scale and Cox’s proportional hazards model in log HR scale. We propose a parametric 3 

approach in which the statistical models of survival outcome, mediators and 4 

confounders are specified. We mainly focus on the case of assuming mediators’ 5 

distribution are Gaussian in order to derive the analytic form. 6 

3.1 Model specification for mediators and confounders 7 

For the k-th mediators and confounders, the regression models are described as 8 

follows: 9 

      𝑀 𝛼 𝐶 𝛽 𝐴 ∑ 𝛾 𝐶 𝐼 ∑ 𝛿 𝑀 𝜀 ,   10 

      𝐶 𝛼 𝐶 𝛽 𝐴 𝐼 ∑ 𝛾 𝐶 ∑ 𝛿 𝑀 𝜀 ,  (9) 11 

The error terms 𝜀 ,   and 𝜀 ,   are independent and normally distributed with 12 

mean zero and respective variances, 𝜎 ,  and 𝜎 , . The parameters above  13 

𝜽 ≡ 𝜶 𝛼 ,𝛼 𝑘 1, … ,𝐾 ,𝜷 𝛽 ,𝛽 𝑘 1, … ,𝐾 ,𝝈𝟐 𝜎 , ,𝜎 , 𝑘 1, … ,𝐾 ,14 

𝜸 𝛾 , 𝛾 , 𝛾 , 𝛾 𝑘 2, … ,𝐾; ℎ 1, … , 𝑘 1 ,15 

𝜹 𝛿 , 𝛿 𝑘 2, … ,𝐾;ℎ 1, … , 𝑘 1  16 

can be estimated using the maximum likelihood approach, and the maximum likelihood 17 

estimator (MLE) of 𝜽  is denoted as 𝜽 . Since the partial decomposition approach 18 

requires the assumption of no-confounders affected by previous covariates, the 19 

regression models of mediators are modified to drop out the time-varying confounders 20 

(𝐶 : ) from mean when we study partial decomposition. The models of mediators are 21 

modified as follows: 22 

      𝑀 𝛼 𝐶 𝛽 𝐴 𝐼 ∑ 𝛿 𝑀 𝜀 ,  for 𝑘 2, … ,𝐾 (10) 23 

To obtain the analytic forms of (4)-(8), we applied moment generating function 24 

uniqueness theorem to characterize 𝐻 𝑚 ,𝑎 , , 𝑐0  by Theorem 1.  25 

Theorem 1. Let 𝐻 𝑚 , 𝑎 , , 𝑐0 ℎ 𝑚 ,𝑎 , , 𝑐0 𝑑𝑚  . If media-26 

tors and confounders follow the regression models as above, then 27 

ℎ 𝑚 , 𝑎 , , 𝑐0   is a Gaussian probability density function with mean 28 

𝜇 𝜽, 𝑎 , , 𝑐0   and variance 𝜏 𝜽  . Moreover, 𝜇 𝜽,𝑎 , , 𝑐0   and 29 

𝜏 𝜽  have recursive forms as follows: 30 

𝜇 𝜽, 𝑎 , , 𝑐 𝛼 𝑐 𝛽 𝑎 ∑ 𝛾31 

𝜇 𝜽,𝑎 , , 𝑐 𝐼 ∑ 𝛿 𝜇 𝜽,𝑎 , , 𝑐   32 

for 𝑘 1, … ,𝐾, where  33 
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𝜇 𝜽,𝑎 , , 𝑐 𝛼 𝑐 𝛽 𝑎 𝐼 ∑ 𝛾   1 

𝜇 𝜽,𝑎
,

, 𝑐 ∑ 𝛿 𝜇 𝜽, 𝑎
,

, 𝑐   2 

and 𝜏 𝜽 𝜎𝑀,𝑘
2 ∑ ∑ 𝛾 𝐸 𝜎𝐶,ℎ

2   3 

𝐼 ∑ 𝛿 ∑ 𝛾 𝐹 𝜏 𝜽 , in which 4 

𝐸 𝐼 𝑠 ℎ ∑ 𝐸 𝛾 1 𝑠 ℎ  and 𝐹 𝐼 𝑠 ℎ 𝛿 ∑ 𝐹 𝛾  . 5 

 6 

The proof detail is presented in Appendix Section 2.1. Based on Theorem 1, we next 7 

derive the closed forms of estimators for iPSE and partPSE under HD scale using 8 

Aalen’s additive hazards model in Section 3.2 and under log HR scales using Cox’s 9 

proportional hazards model in Section 3.3.  10 

3.2 Aalen’s additive hazards model 11 

Following the regression setting of mediators and confounders, we apply Aalen’s 12 

additive hazards model for the outcome Y as follows: 13 

    𝜆 𝑡|𝐴,𝐶 , ,𝑀 , 𝜆 𝑡 𝛼 𝐶 𝛽 𝐴 ∑ 𝛾 𝐶 ∑ 𝛿 𝑀 ,  (11) 14 

where 𝜆 𝑡   is the baseline hazard and 𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛼 ,𝛽 ,𝜸𝒉
𝒀 𝛾 |ℎ15 

1, … ,𝐾 ,𝜹𝒉
𝒀 𝛿 |ℎ 1, … ,𝐾  is the regression coefficient. Typically, the estimator 16 

of 𝜽𝒚𝐀𝐚𝐥𝐞𝐧 can be derived by the semiparametric estimating equation (Lin and Ying, 17 

1994), and we denote the estimator as 𝜽𝒚𝐀𝐚𝐥𝐞𝐧 . Here, we separately introduce the 18 

estimators for iPSE  and partPSE . 19 

𝒊𝑷𝑺𝑬𝑲
𝑯𝑫  20 

According to models (6), (9), and (11), we have the hazard function of 21 

counterfactual outcome incorporated with Aalen’s additive hazards model as follows:  22 

𝜆 𝑎 , ; 𝑡  23 

𝜆 𝑡 𝛽 ∑ 𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛽 𝑎 𝛼 ∑ 𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛼 𝐸 𝐶   24 

∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝜇 𝜽,𝑎 , , 𝑐 𝐸 𝐶 ∑ 𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝜎𝐶,𝑗
2 𝑡   25 

∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝜏 𝜽 𝑡  26 

where 27 

𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛾 , 𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛾 ∑ 𝑅 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛾 , , and 28 

𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛿 𝐼 ∑ 𝛾 °  ∑ ∏ 𝛾∈ °,
°

 𝛿 °°  .  29 

𝑃 𝐾 𝑗°,𝐾 𝑗  is the sth subset of P, and 𝑃 𝑎, 𝑏 |𝑎, 𝑏 ∈ 𝐾 𝑗°,𝐾 𝑗° 1, . . . ,𝐾30 

𝑗 1  and 𝑎 𝑏 ∪ 𝛷,  where 𝛷  is a null set. The detailed derivation is shown in 31 

Appendix Section 3. Consequently, 𝑖𝑃𝑆𝐸  in (7) can be derived as  32 

for d = 1, 𝑖𝑃𝑆𝐸 1,𝑎∗ ,𝑎∗ 𝛽 ∑ 𝑅 𝜽,𝜽𝒚𝑨𝒂𝒍𝒆𝒏 𝛽 𝑎∗ 𝑎∗ , and 33 
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for d > 1, 𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ ℋ 𝜽,𝜽𝒚𝑨𝒂𝒍𝒆𝒏,𝑎 , 𝑎∗ ,𝑎∗  1 

ℋ 𝜽,𝜽𝒚𝑨𝒂𝒍𝒆𝒏,𝑎 , 𝑎∗ ,𝑎∗   2 

where ℋ 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧,𝑎 , ∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝜇 𝜽,𝑎 , , 𝑐 𝐸 𝐶  3 

 (12) 4 

In particular, when time-varying confounders (i.e. 𝐶 , ) are absence, equation 5 

(12) is identical to the structural equation modeling (SEM) estimator. We termed the 6 

PSE without time-varying confounders as 𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝐶 1,𝐾 ∅  . The 7 

analytic form is detailed in Appendix Section 2. For example, under two mediators, we 8 

have 𝑖𝑃𝑆𝐸 4,𝑎∗ ,𝑎∗ |𝐶 1,𝐾 ∅ 𝛿 𝛿 𝛽   which is corresponding to the 9 

result of product method by the path 𝐴 𝑀 𝑀 𝑌. More examples of 𝑖𝑃𝑆𝐸  10 

with and without time-varying confounder are illustrated in Appendix Section 3. 11 

𝒑𝒂𝒓𝒕𝑷𝑺𝑬𝑲
𝑯𝑫  12 

Because the existence of time-varying confounders violates the assumptions of 13 

partial decomposition approach, additive hazard model in (11) should be modified as 14 

    𝜆 𝑡|𝐴,𝐶 ,𝑀 , 𝜆 𝑡 𝛼 𝐶 𝛽 𝐴 ∑ 𝛿 𝑀 ,  (13) 15 

Based on equations (6), (10) and (13), we derived the hazard function of counterfactual 16 

outcome as below: 17 

𝜆 𝑎 , 𝑒 , ; 𝑡  18 

𝜆 𝑡 𝛽 𝑎 ∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛽 𝑒  𝛼 ∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛼 𝐸 𝐶  19 

∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝜎 , 𝑡,   20 

where 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛿 , 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛿 ∑ 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛿 , . The detail is 21 

provided in Appendix Section 3. Based on the result above, partPSE incorporating with 22 

Aalen’s additive hazards model in HD scale (7) is  23 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑎∗ ,𝑎∗  24 

𝐼 𝛽 𝑎∗ 𝑎∗ 𝐼 𝑍 𝜽,𝜽𝒚𝐀𝐚𝐥𝐞𝐧 𝛽 𝑎∗ 𝑎∗  for 𝑔 ∈ 0,1, 2, … ,𝐾 . 25 

 (14) 26 

In 2017, Huang and Yang proposed a multi-mediator model of survival come for 27 

partPSE (Huang and Yang, 2017), and they provide the corresponding estimators for 28 

the case of two ordered mediators. Formula (14) is essentially an extension of Huang’s 29 

work to the general form of partPSE. More examples of 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  are illustrated in 30 

Appendix Section 3. Additionally, the partPSE in formula (14) is the sum of a certain 31 

set of iPSEs under no time-varying confounder assumption. We subsequently proposed 32 

Theorem 2 to verify the relation between them. 33 

 34 
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Theorem 2. In the setting with K mediators and Aalen’s additive hazards model, we 1 
have  2 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑎∗ ,𝑎∗ ∑ 𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ |𝐶 , ∅∈ ,  3 

where 𝑔 ∈ 1,2, . . . ,𝐾  and 𝐷 2 1 ∑ 2  𝑏 ⊆ 𝑔 1,𝑔 2, … ,𝐾  . 4 

 5 

The proof of Theorem 2 is presented in Appendix Section 2.2. In Theorem 2, 𝐷  is a 6 

set of codes, and these codes are exactly corresponding to the paths starting from the 7 

𝑔  mediator. In another words, 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  can be further decomposed into several 8 

specific 𝑖𝑃𝑆𝐸   which are all first mediated by the 𝑔   mediator, implying that 9 

𝑖𝑃𝑆𝐸  contains more detailed information about mechanism than 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  for 10 

causal effect decomposition. 11 

3.3 Cox’s proportional hazards model 12 

In this section, we further characterize 𝑖𝑃𝑆𝐸   and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸   via Cox’s 13 

proportional hazards model. Different from Aalen’s additive hazards model, Cox’s 14 

proportional hazards model assume that the hazard is determined by the covariates 15 

exponentially, that is  16 

    𝑙𝑜𝑔 𝜆 𝑡|𝐴,𝐶 , ,𝑀 , 𝑙𝑜𝑔 𝜆 𝑡 𝛼 𝐶 𝛽 𝐴 ∑ 𝛾 𝐶17 

∑ 𝛿 𝑀 , 18 
 (15) 19 

where 𝜆 𝑡  is the baseline hazard and 𝜽𝒚𝐂𝐨𝐱 𝛼 ,𝛽 ,𝜸𝒉
𝒀 𝛾 |ℎ 1, … ,𝐾 ,𝜹𝒉

𝒀20 

𝛿 |ℎ 1, … ,𝐾  is the corresponding parameter. Similar to Section 3.2, we derived 21 

the corresponding estimators for 𝑖𝑃𝑆𝐸  and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  as follows. 22 

𝒊𝑷𝑺𝑬𝑲
𝑯𝑹  23 

By formulas (6), (9), and (15), and the rare outcome assumption (Huang and Yang, 24 

2017) which implies 𝑒 | , , , , 1, one approximation of the counterfactual 25 

log hazard is 26 

𝑙𝑜𝑔 𝜆 𝑎 , ; 𝑡  𝑙𝑜𝑔𝜆 𝑡 𝛽 ∑ 𝑅 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛽 𝑎  27 

𝛼 ∑ 𝑅 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛼 𝐸 𝐶   28 

∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝜇 𝜽,𝑎 , , 𝑐 𝐸 𝐶 ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝜏 𝜽 .  29 

where 𝑅 𝜽,𝜽𝑦  and 𝑍 𝜽,𝜽𝑦  have been defined in Section 3.2. Derivation of the 30 

above expression is in Appendix Section 4. We then derived the analytic forms of (8) 31 

as follows:  32 

for d = 1, 𝑖𝑃𝑆𝐸 1,𝑎∗ ,𝑎∗ 𝛽 ∑ 𝑅 𝜽,𝜽𝒚𝑪𝒐𝒙 𝛽 𝑎∗ 𝑎∗ , and 33 

for d > 1, 𝑖𝑃𝑆𝐸 𝑑,𝑎∗ ,𝑎∗ ℋ 𝜽,𝜽𝒚𝑪𝒐𝒙,𝑎 , 𝑎∗ ,𝑎∗   34 

ℋ 𝜽,𝜽𝒚𝑪𝒐𝒙, 𝑎 , 𝑎∗ ,𝑎∗   35 

where ℋ 𝜽,𝜽𝒚𝐂𝐨𝐱,𝑎 , ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝜇 𝜽, 𝑎 , , 𝑐 𝐸 𝐶  36 

 (16) 37 
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𝒑𝒂𝒓𝒕𝑷𝑺𝑬𝑲
𝑯𝑹  1 

To derive partPSE via Cox’s proportional hazards model, a log hazard model 2 

without time-varying confounders is required, and we modified model (15) as   3 

    𝑙𝑜𝑔 𝜆 𝑡|𝐴,𝐶 , ,𝑀 , 𝑙𝑜𝑔 𝜆 𝑡 𝛼 𝐶 𝛽 𝐴 ∑ 𝛿 𝑀 .  (17) 4 

By equations (6), (9) and (17), the approximated log hazard function of counterfactual 5 

outcome is given by 6 

𝑙𝑜𝑔 𝜆 𝑎 , 𝑒 , ; 𝑡 𝑙𝑜𝑔 𝜆 𝑡 𝛽 𝑎 ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛽 𝑒   7 

𝛼 ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛼 𝐸 𝐶 ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝜎 ,   8 

where 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛿  , 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛿 ∑ 𝑍 𝜽,𝜽𝒚𝐂𝐨𝐱 𝛿 ,  . Derivation of the 9 

above expression is in Appendix Section 4. Based on the result above, partPSE 10 

incorporating with Cox’s proportional hazards model in log HR scale (8) is  11 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔,𝑎∗ ,𝑎∗  12 

𝐼 𝛽 𝑎∗ 𝑎∗ 𝐼 𝑍 𝜽,𝜽𝒚
𝐂𝐨𝐱 𝛽 𝑎∗ 𝑎∗  for 𝑔 ∈ 0,1, 2, … ,𝐾 . 13 

 (18) 14 

The examples of 𝑖𝑃𝑆𝐸 𝑑, 𝑎 1
∗ , 𝑎 0

∗   and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔, 𝑎 1
∗ , 𝑎 0

∗   are shown in 15 

Appendix Section 4. 16 

Obviously, the estimator of 𝑖𝑃𝑆𝐸  is the same as that of 𝑖𝑃𝑆𝐸  by replacing 17 

𝜽𝒚𝐀𝐚𝐥𝐞𝐧  by 𝜽𝒚𝐂𝐨𝐱 . As a result, all properties, including the comparison with SEM 18 

estimator and the relation between 𝑖𝑃𝑆𝐸  and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  which are discussed in 19 

Section 3.2, are still applicable for 𝑖𝑃𝑆𝐸  and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 .  20 

4. Asymptotic theorems 21 

For simplification, we set 𝑎∗   and 𝑎∗   as one and zero in Sections 4 and 5, 22 

respectively. Based on the proposed estimators for PSEs in the previous section, the 23 

following result shows the asymptotic properties about 𝑖𝑃𝑆𝐸 𝑑 , 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑑 , 24 

𝑖𝑃𝑆𝐸 𝑔 , and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔  for each 𝑑 and 𝑔. Since these estimators are the 25 

functions of 𝜽 and 𝜽𝐀𝐚𝐥𝐞𝐧 (or 𝜽𝒚𝐂𝐨𝐱), these PSEs can be represented as 26 

𝑖𝑃𝑆𝐸 𝜽,𝜽𝐀𝐚𝐥𝐞𝐧  𝑖𝑃𝑆𝐸 𝑑 𝑑 1, … , 2 , 27 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽,𝜽𝐀𝐚𝐥𝐞𝐧  𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔 𝑔 0, 1, … ,𝐾 , 28 

𝑖𝑃𝑆𝐸 𝜽,𝜽𝒚𝐂𝐨𝐱  𝑖𝑃𝑆𝐸 𝑑 𝑑 1, … , 2 , and 29 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽,𝜽𝒚𝐂𝐨𝐱  𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝑔 𝑔 0, 1, … ,𝐾 . 30 

We first provided a theorem to show the asymptotic distributions of PSE estimators on 31 

Aalen’s additive hazards model. As mentioned above, 𝜽  is the MLE and for 𝜽 , 32 
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𝜽𝐀𝐚𝐥𝐞𝐧 the estimator via semiparametric estimating equation for 𝜽𝐀𝐚𝐥𝐞𝐧, and 𝜽𝐂𝐨𝐱 the 1 

partial likelihood estimator for 𝜽𝐂𝐨𝐱. We denote the true value of 𝜽,𝜽𝐀𝐚𝐥𝐞𝐧,𝜽𝐂𝐨𝐱  by 2 

𝜽𝟎,𝜽 𝟎
𝐀𝐚𝐥𝐞𝐧,𝜽 𝟎

𝐂𝐨𝐱 . Under causal assumptions in Section 2, we have Theorems 3 and 4 3 

for the asymptotic distributions. 4 

     5 

Theorem 3.  6 
(1) Under Assumptions 1 to 4, we have 7 

√𝑛 𝑖𝑃𝑆𝐸 𝜽,𝜽𝐀𝐚𝐥𝐞𝐧 𝑖𝑃𝑆𝐸 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧 →𝑁 0,𝜮𝒊𝒏𝒕
𝑯𝑫 , 8 

where 𝜮𝒊𝒏𝒕
𝑯𝑫 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
Cov 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
, and 9 

(2) Under Assumptions 1 to 6, we have 10 

√𝑛 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽,𝜽𝐀𝐚𝐥𝐞𝐧 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧 →𝑁 0,𝜮𝒑𝒂𝒓𝒕
𝑯𝑫  11 

where 𝜮𝒑𝒂𝒓𝒕𝑯𝑫 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
Cov 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
. 12 

 13 

Here, 
𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
 , 

𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
 , and Cov 𝜽 ,𝜽𝐀𝐚𝐥𝐞𝐧   are estimated by 14 

𝜽,𝜽𝑦
𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
 , 

𝜽,𝜽𝑦
𝐀𝐚𝐥𝐞𝐧

𝜽,𝜽𝐀𝐚𝐥𝐞𝐧
  and Cov 𝜽,𝜽𝑦

𝐀𝐚𝐥𝐞𝐧
 . Similarly, the asymptotic 15 

distributions of 𝑖𝑃𝑆𝐸 𝜽,𝜽𝒚𝐂𝐨𝐱   and 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽,𝜽𝒚𝐂𝐨𝐱   are derived in the 16 

following theorem. 17 

 18 

Theorem 4.  19 

(1) Under Assumptions 1 to 4 and rare outcome assumption, we have 20 

√𝑛 𝑖𝑃𝑆𝐸 𝜽,𝜽𝐜𝐨𝐱 𝑖𝑃𝑆𝐸 𝜽 ,𝜽𝒚𝟎
𝐂𝐨𝐱 →𝑁 0,𝜮𝒊𝒏𝒕

𝑯𝑹 , 21 

where 𝚺𝒊𝒏𝒕
𝑯𝑹 𝜽 ,𝜽𝒚𝟎

𝐂𝐨𝐱

𝜽,𝜽𝒚
𝐂𝐨𝐱 Cov 𝜽 ,𝜽𝒚𝟎

𝐂𝐨𝐱 𝜽 ,𝜽𝒚𝟎
𝐂𝐨𝐱

𝜽,𝜽𝒚
𝐂𝐨𝐱 , and 22 

(2) Under Assumptions 1 to 6 and rare outcome assumption, we have 23 

√𝑛 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽,𝜽𝐜𝐨𝐱 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 𝜽 ,𝜽𝒚𝟎
𝐂𝐨𝐱 →𝑁 0,𝚺𝒑𝒂𝒓𝒕

𝑯𝑹  24 

where 𝚺𝒑𝒂𝒓𝒕𝑯𝑹 𝜽 ,𝜽𝒚𝟎
𝐂𝐨𝐱

𝜽,𝜽𝒚
𝐂𝐨𝐱 Cov 𝜽 ,𝜽𝒚𝟎

𝐂𝐨𝐱 𝜽 ,𝜽𝒚𝟎
𝐂𝐨𝐱

𝜽,𝜽𝒚
𝐂𝐨𝐱 . 25 

 26 

Similarly, 
𝜽 ,𝜽𝐂𝐨𝐱

𝜽,𝜽𝐂𝐨𝐱
, 

𝜽 ,𝜽𝐂𝐨𝐱

𝜽,𝜽𝐂𝐨𝐱
, and Cov 𝜽 ,𝜽𝐂𝐨𝐱  can be estimated by 27 

𝜽,𝜽𝑦
𝐂𝐨𝐱

𝜽,𝜽𝐂𝐨𝐱
 , 

𝜽,𝜽𝑦
𝐂𝐨𝐱

𝜽,𝜽𝐂𝐨𝐱
  and Cov 𝜽,𝜽𝑦

𝐂𝐨𝐱
 , respectively. The details of 28 

Theorems 3 and 4 can be found in Appendix Section 2.3. 29 

5. Simulation 30 

In this section, we conduct a simulation study to evaluate the performance of our 31 

proposed models with particular sample sizes based on Cox’s proportional hazards 32 

model. The Aalen’s additive hazards model can smoothly substitute Cox’s proportional 33 
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hazards model in this simulation. Since iPSE and partPSE are the approaches based on 1 

two different assumptions, we consider two scenarios, with and without time-varying 2 

confounders, for evaluation.  3 

 In scenario A, we simulated the exposure variable (A), two baseline confounders 4 

( 𝐶 ,𝐶  ), three mediators (𝑀 ,𝑀 ,𝑀  ), and three corresponding time-varying 5 

confounders (𝐶 ,𝐶 ,𝐶 ) under the models 6 

𝐴 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.2 , 𝐶 ,𝐶 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.2 , 7 
𝐶 0.5 0.5 𝐴 𝐶 𝐶 𝜀 , 8 

𝑀 0.5 0.5 𝐴 𝐶 𝐶 0.25𝐶 𝜀 , 9 
𝐶 0.5 0.5 𝐴 𝐶 𝐶 𝐶 𝑀 0.25𝑀 𝜀 , 10 

𝑀 0.5 0.5 𝐴 𝐶 𝐶 𝐶 𝑀 𝐶 0.25𝐶 𝜀 , 11 
𝐶 0.5 0.5 𝐴 𝐶 𝐶 𝐶 𝑀 𝐶 𝑀 0.25𝑀 𝜀 , and 12 
𝑀 0.5 0.5 𝐴 𝐶 𝐶 𝐶 𝑀 𝐶 𝑀 𝐶 0.25𝐶 𝜀 , 13 

where 𝜀 , 𝜀 , 𝜀 , 𝜀 , 𝜀 , and 𝜀  follow a normal distribution with zero mean 14 

and standard deviation is 0.5. To simulate the survival times (Y) from Cox’s 15 

proportional hazards model, we applied the inverse probability method into data 16 

generation (Bender, et al., 2005), and the simulation procedure is shown as follows. 17 

The event times (T) are generated according to a Weibull distribution as  18 

𝑇  𝑙𝑜𝑔 𝑢  / 0.01  𝑒  , 𝑢 ~ Uniform 0,1  where 19 

𝜇 0.5 0.5 𝐴 𝐶 𝐶 0.2𝐶 0.2𝑀 0.4𝐶 0.4𝑀 0.8𝐶 0.8𝑀 , 20 

The censoring times (CT) are randomly drawn from an exponential distribution with a 21 

rate of 0.001. As a result, the observed survival times is defined as the minimum of T 22 

and CT. Different from scenario A including time-varying confounders, scenario B aims 23 

to investigate the properties of partPSE, which assumes no time-varying confounders. 24 

Thus, we generated data without time-varying confounders in scenario B, and, the 25 

generative models are modified as follows: 26 

𝐴 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.2 , 𝐶 ,𝐶 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 0.2 , 27 
𝑀 0.5 0.5 𝐴 𝐶 𝐶 𝜀 , 28 

𝑀 0.5 0.5 𝐴 𝐶 𝐶 𝑀 𝜀 , and 29 
𝑀 0.5 0.5 𝐴 𝐶 𝐶 𝑀 𝑀 𝜀 . 30 

Similarly, the event times in scenario B are also generated by  31 

𝑇  𝑙𝑜𝑔 𝑢  / 0.01  𝑒  ,𝑢 ~ Uniform 0,1 , and 32 
𝜇 0.5 0.5 𝐴 𝐶 𝐶 0.2𝑀 0.4𝑀 0.8𝑀 . 33 

For both scenarios, with sample sizes n = 1000, we report the simulation results from 34 

1000 replicates in the next section. 35 

 The results of eight (=23) 𝑖𝑃𝑆𝐸  under scenario A are presented in Table 1, and 36 

we used bias, standard deviation (SD), root mean square error (RMSE), and coverage 37 

rate (CR) to measure the performance of point and interval estimates. We adopted the 38 

bootstrap approach for SD estimation instead of applying the asymptotic variance for 39 
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simplicity. This simulation includes three ordered mediators, and the effects of eight 1 

different paths are estimated. As a result, the absolute value of the bias for each effect 2 

less than 0.003, and the CRs are around 95%. While the CRs for the paths of 3 

AM2M3Y and AM1M2M3Y are slightly away from 95%, the small 4 

bias and RMSE of these effects reveal that the estimators are efficient. Additionally, the 5 

true effect values of the two paths above are relatively small than the others, implying 6 

that more samples are required for the paths with small effect sizes to increase accuracy. 7 

Under scenario B, Table 2 shows the simulation result of four (=3+1) partPSE . The 8 

biases are close to zero, and the CRs are around 95%. The CR of AM3Y in Table 9 

2 also less than 95% due to the small effect.  10 

To explore the asymptotic properties of the proposed estimators, we varied the 11 

sample sizes for both scenarios in this section. The simulated data sets are generated 12 

from the same models of scenarios A and B, and fifty different sample sizes uniformly 13 

selected from the interval of (200, 10000) are considered in this simulation. Figures 3(a) 14 

and 3(c) show the quantity of bias under different sample sizes for 𝑖𝑃𝑆𝐸   and 15 

𝑝𝑎𝑟𝑡𝑃𝑆𝐸  , respectively. Figures 3(b) and 3(d) illustrate the patterns of SD when 16 

sample sizes increase. Consequently, when the sample size increases, the bias and SD 17 

in both approaches massively decreases. The result provides clear evidence that the 18 

proposed estimators converge to the correct parameters in large sample size. 19 

6. Data application 20 

Epigenetics is a molecular process that influences the flow of information between 21 

the underlying DNA sequence and variable gene expression patterns without altering 22 

DNA sequences. DNA methylation is one of the critical epigenetic factors to regulate 23 

gene expression during development and cell proliferation (Jaenisch and Bird, 2003). 24 

Recently, the DNA-methylated regions have been studied extensively in cancer studies 25 

(Hansen, et al., 2011). While the correlation between DNA methylation and gene 26 

expression in cancer has been reported (Spainhour, et al., 2019), the causal mechanism 27 

across genes remains to be studied. In this section, we used the proposed causal multi-28 

mediation analysis to explore the underlying causal mechanism in TCGA (The Cancer 29 

Genome Atlas) database. 30 

We chose 453 patients with lung cancer, 226 with adenocarcinoma and 227 with 31 

squamous cell carcinoma, and all of the genomics data and patients’ information were 32 

downloaded from TCGA website. DNA methylation and gene expression were 33 

measured in these patients using Illumina Human-Methylation 450K and Agilent gene 34 

expression arrays, respectively. All genomic markers were measured on primary tumor 35 

samples collected during surgery. From the pre-analysis of the association between the 36 
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methylation-expression pairs and the survival outcome, we identified that the 1 

methylation change in the gene CD109 can significantly affect the survival outcome. 2 

In the literature, DNA methylation of CD109 has a role in gastrointestinal cancer and 3 

colorectal cancer for poor survival (Shigaki, et al., 2015; Yi, et al., 2011). In this study, 4 

we illustrate our method by investigating the detailed mechanisms of CD109 5 

methylation influencing the survival outcome through gene expression in lung cancer 6 

patients. 7 

Let DNA methylation of CD109 at cg06340118 as the exposure (A), survival as 8 

the outcome (Y), gene expression of CD109 as the third mediator (M3). We further 9 

included another two gene expressions (SLC16A3, CLIC6) as (M1, M2) based on the 10 

pre-selected methylation-expression pairs that affected survival. SLC16A3 and CLIC6 11 

have a function concerning ion channels and transporters that are a new class of 12 

membrane proteins aberrantly expressed in cancer (Lastraioli, et al., 2015). To 13 

investigate the causal mechanism, we consider the causal structures as shown in Figure 14 

4. We applied our method to decompose the total effects into eight iPSEs and four 15 

partPSEs, separately. Since the genomic experiment usually does not include the time-16 

varying confounders, we adopted the reduced version of iPSE without time-varying 17 

confounders as discussed in Section 2. We employed Aalen’s additive hazards model 18 

and Cox’s proportional hazards model for survival analyses. Patients’ age, gender, 19 

ethnicity, radiation therapy, cancer type, cancer stage, and smoking pack-years were 20 

adjusted as baseline confounders (C0).  21 

 The result of PSE estimation is shown in Table 3. At 0.05 α-level, partial PSEs 22 

estimated by 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  are all significant. In addition, the detailed decomposition 23 

estimated by 𝑖𝑃𝑆𝐸   reveals that the effect sizes of methylation through some 24 

pathways are relatively small. For example, 𝑝𝑎𝑟𝑡𝑃𝑆𝐸 1 , which is the effect first 25 

mediated by M1 (that is AM1Y), is significant. AM1Y can be decomposed into 26 

four paths, AM1Y, AM1M2Y, AM1M3Y, and 27 

AM1M2M3Y, and the result of 𝑖𝑃𝑆𝐸  shows that the significant effect of 28 

AM1Y is mostly contributed by pathways AM1 Y and AM1 M3Y. The 29 

result above reflects the utility of iPSE for comprehensively exploring the causal 30 

mechanism. Additionally, in agreement with the literature, the estimated direct effects 31 

of DNA methylation at cg06340118 in survival (AY) significantly away from zero 32 

(Shigaki, et al., 2015; Yi, et al., 2011). Moreover, the effect of CD109 methylation at 33 

locus cg06340118 on survival time mediated through CD109 gene expression 34 

(AM3Y) are negative. The negative correlation between DNA methylation and 35 

gene expression among the promoter region has been a pattern commonly found by a 36 

pan-cancer analyses (Anastasiadi, et al., 2018; Spainhour, et al., 2019).  37 
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7. Discussion 1 

Two significant contributions have been made by this study. First, we provide a 2 

framework of causal multi-mediation analysis for an arbitrary number of ordered 3 

mediators, including a general definition and two approaches for addressing the 4 

difficulty of non-identifiability of traditional PSE. Second, we extend partPSE and iPSE 5 

into the context of the survival analysis. Based on Aalen’s additive hazards model and 6 

Cox’s proportional hazards model as well as normally distributed mediators, the 7 

analytic forms of partPSE and iPSE can be obtained in both HD and HR scales. In 8 

particular, when time-varying confounders are absence, the proposed iPSE is identical 9 

to the SEM estimator. 10 

 Several limitations merit notice, and some should be improved in further studies. 11 

First, the unmeasured confounding assumption is difficult to verified, and it is 12 

challenging to collect all possible covariates comprehensively. Sensitivity analysis 13 

technique is required in the future when a set of confounders are known in previous 14 

literature but not collected in a study. Second, this framework may not be applicable to 15 

settings with mediators truncated or semi-competed by the survival outcome, that could 16 

cause biased or even undefined PSE estimation. In the future, it is worthy to extend 17 

iPSE and partPSE into the analysis of truncated mediators. Third, although the causal 18 

multi-mediation analysis can detail the mechanism of causal effects, the causal structure 19 

including the order of mediators should be assumed based on domain knowledge. 20 

Finally, a criterion for path selection or mediator selection is necessary to increase the 21 

power of this method when the number of mediators is large. 22 
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 1 

 2 

Figure 1. Literature review of causal multi-mediation analysis with K mediators. 3 

 4 

 5 

 6 
Figure 2. The causal relationship among all variables is demonstrated by a direct acyclic graph 7 

(DAG). A, 𝑀 , , Y, 𝐶 , and 𝐶 , , denote the exposure, the mediators, the outcome, the 8 

baseline confounders, and the time-varying confounders, respectively. 9 

 10 
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 1 

Figure 3. The scatter plots of bias and standard deviation across fifty different sample sizes 2 

uniformly selected from the interval of (200, 10000). (a) and (b) are the plots of bias and 3 

standard deviation (SD) for 𝑖𝑃𝑆𝐸  based on scenarios A, respectively. (c) and (d) are the 4 

plots of bias and SD for 𝑝𝑎𝑟𝑡𝑃𝑆𝐸  based on scenarios B, respectively. The smoothing curves 5 

are done by locally weighted regression, controlling the degree of smoothing at 0.6.    6 

 7 

 8 

 9 

Figure 4. The causal diagram of DNA methylation of CD109, gene expression on different 10 

genes (including SLC16A3, CLIC6, and CD109), and lung cancer. 11 

 12 

 13 



28 
 

Table 1. Simulation result under the scenario A for 𝑖𝑃𝑆𝐸   1 

Path* True value Bias SD RMSE CR 

AY 0.609 0.00300 0.11594 0.11598 95.3  

AM1Y 0.062 0.00082 0.03613 0.03614 94.8  

AM2Y 0.042 0.00088 0.01985 0.01987 95.1  

AM1M2Y 0.009 -0.0001 0.00566 0.00566 95.0  

AM3Y 0.016 0.00002 0.01768 0.01768 95.0  

AM1M3Y 0.003 0.00013 0.00664 0.00665 95.6  

AM2M3Y 0.001 0.00001 0.00273 0.00273 93.9  

AM1M2M3Y 0.0002 0.00001 0.00064 0.00064 94.4 

*Both baseline confounders and time-varying confounders are present in each path. 2 
Abbreviation: SD, standard deviation; RMSE, root mean square error; CR, coverage rate. 3 

 4 

Table 2. Simulation result under the scenario B for 𝑝𝑎𝑟𝑡𝑃𝑆𝐸   5 

Path* True value Bias SD RMSE CR 

AY 0.50000 0.00519 0.13789 0.13799 95.2 

AM1Y** 0.02979 -0.00066 0.03134 0.03135 95.1 

AM2Y** 0.01289 -0.00009 0.01217 0.01217 94.8 

AM3Y 0.00625 0.00033 0.01707 0.01707 93.8 

*Only baseline confounders are present in each path. 6 
**(AM2Y) = (AM2Y) + (AM2M3Y); (AM1Y) follows the same definition. 7 
Abbreviation: SD, standard deviation; RMSE, root mean square error; CR, coverage rate. 8 

 9 
Table 3. Effect decomposition of CD109 methylation (A) on lung cancer (Y) through 10 
the gene expression of SLC16A3 (M1), CLIC6 (M2), and CD109 (M3). 11 

Path 
Aalen’s additive hazards 

model (in HD scale) 
Cox’s proportional hazards 

model (in log HR scale) 

 𝑖𝑃𝑆𝐸  𝑝𝑎𝑟𝑡𝑃𝑆𝐸  𝑖𝑃𝑆𝐸  𝑝𝑎𝑟𝑡𝑃𝑆𝐸  

 PSE 
(SD) 

P value 
PSE 
(SD) 

P value 
PSE 
(SD) 

P value 
PSE 
(SD) 

P value 

AY 
0.061 

(0.002) 
0.002* 

0.061 
(0.020) 

0.002* 
0.397 

(0.128) 
0.002* 

0.397 
(0.128) 

0.002* 

AM1Y 
-0.015 
(0.006) 

0.016* 

-0.018 
(0.007) 

0.008* 

-0.095 
(0.037) 

0.011* 

-0.113 
(0.040) 

0.005* 
AM1M3Y 

-0.002 
(0.006) 

0.057 
-0.018 
(0.028) 

0.039* 

AM1M2Y 
-0.0001 
(0.001) 

0.927 -510-4 
(0.005) 

0.922 

AM1M2M3Y -810-6 

(0.013) 
0.933 -110-4 

(0.077) 
0.929 

AM2Y 
-0.013 
(0.001) 

0.018* 
-0.015 
(0.006) 

0.013* 

-0.075 
(0.009) 

0.009* 
-0.085 
(0.031) 

0.006* 
AM2M3Y 

-0.001 
(0.001) 

0.108 
-0.01 

(0.006) 
0.082 

AM3Y 
-0.029 

(0.0001) 
0.024* 

-0.029 
(0.013) 

0.024* 
-0.197 
(0.001) 

0.009* 
-0.199 
(0.077) 

0.009* 

* P value < 0.05 12 
Abbreviation: PSE, path-specific effect; HD, hazard difference; HR, hazard ratio; SD, standard deviation. 13 


