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Summary

Causal mediation analysis with multiple mediators (causal multi-mediation analysis) is
critical in understanding why an intervention works, especially in medical research.
Deriving the path-specific effects (PSEs) of exposure on the outcome through a certain
set of mediators can detail the causal mechanism of interest. However, the existing
models of causal multi-mediation analysis are usually restricted to partial
decomposition, which can only evaluate the cumulative effect of several paths.
Moreover, the general form of PSEs for an arbitrary number of mediators has not been
proposed. In this study, we provide a generalized definition of PSE for partial
decomposition (partPSE) and for complete decomposition, which are extended to the
survival outcome. We apply the interventional analogues of PSE (iPSE) for complete
decomposition to address the difficulty of non-identifiability. Based on Aalen’s additive
hazards model and Cox’s proportional hazards model, we derive the generalized
analytic forms and illustrate asymptotic property for both iPSEs and partPSEs for
survival outcome. The simulation is conducted to evaluate the performance of
estimation in several scenarios. We apply the new methodology to investigate the
mechanism of methylation signals on mortality mediated through the expression of

three nested genes among lung cancer patients.
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1. Introduction

Causal mediation analysis in the presence of multiple mediators (termed as “causal
multi-mediation analysis” throughout this article) is one of the most powerful methods
to investigate the detailed mechanism of a confirmed causal effect. To explicitly
describe the detailed compositions of this causal mechanism, Avin et al. proposed path-
specific effects (PSEs) based on a counterfactual framework to quantify pathways
comprised of mediators of interest (Avin, ef al., 2005). However, most PSEs cannot be
nonparametrically identified (Daniel, et al., 2015). Several methods have been
proposed to address the difficulty of non-identifiability, which are summarized in
Figure 1. In settings with K mediators, we categorize the existing approaches into three
groups according to the number of paths to be decomposed: (1) Two-way
decomposition; (2) Partial decomposition; and (3) Complete decomposition. Two-way
decomposition treats all mediators as one unit and decomposes total effect (TE) into the
natural direct and indirect effects rather than detailed PSEs (Fasanelli, et al., 2019;
VanderWeele and Vansteelandt, 2014). Partial decomposition decomposes natural
indirect effects into K (or K+1) paths through each distinct mediator, and can be further
categorized into three subgroups according to different assumptions of causal structure
among mediators: (2.1) partial parallel decomposition, (2.2) partial sequential
decomposition, and (2.3) partial unstructured decomposition. Specifically, partial
parallel decomposition assumes that the multiple mediators are not affected by each
other (Taguri, et al., 2015; Wang, et al., 2013). Partial sequential decomposition
assumes that mediators are causally ordered (Steen, et al., 2017; Vanderweele, et al.,
2014). Partial unstructured decomposition does not assume the structure among
mediators and decomposes the joint indirect effect into K separate indirect effect
through each mediator and one indirect effect through the dependence among mediators
(Loh, et al., 2019; Moreno-Betancur, et al., 2019; Vansteelandt and Daniel, 2017).
However, the character of an undefined structure causes that partial unstructured
decomposition cannot explicitly identify the paths of interest in general, which leads to
the difficulty of interpreting the causal mechanism. Complete decomposition (also
termed full or finest decomposition) decomposes TE into all 2X PSEs, most of which
are unidentified. Two choices are available: (3.1) sensitivity analysis approach and (3.2)
complete interventional approach. Sensitivity analysis approach evaluates the boundary
of PSE (Albert, et al., 2019; Daniel, et al., 2015), while interventional approach
proposed a randomized interventional analogues of PSE (iPSE) (Lin and VanderWeele,
2017). The typical interventional approach has been widely used for settings with one
mediator (Didelez, et al., 2012; Geneletti, 2007; Vanderweele, et al., 2014), time-
varying mediators (Lin, et al., 2017; Lin, et al., 2017; VanderWeele and Tchetgen
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Tchetgen, 2017; Zheng and van der Laan, 2012), and multiple mediator with partial
decomposition (Moreno-Betancur, et al., 2019; Vansteelandt and Daniel, 2017).

In terms of the survival framework, the method involving one mediator was first
proposed by Lange and Hansen based on additive hazard model (Lange and Hansen,
2011). VanderWeele extended Lange and Hansen’s approach using both the Cox’s
proportional hazards model and the accelerated failure time model with a rare disease
assumption (VanderWeele, 2011), while Tchetgen and Shpitser proposed a more general
semiparametric approach (Tchetgen and Shpitser, 2012). Several methods have been
proposed for scenarios with two or three causally ordered multiple mediators (Cho and
Huang, 2019; Fasanelli, ef al., 2019; Huang and Yang, 2017; Huang and Cai, 2015; Yu,
et al., 2019). Although these studies specifically derived the analytic form of PSEs for
survival outcome, two issues have not been fully addressed yet. First, due to the
exponential increase in the number of PSEs along with the number of mediators, the
existing methods only allow a small number of mediators (Figurel). A general form of
PSE with an arbitrary number of mediators is necessary for a wide application in
general cases. Second, the existing approaches for survival outcome mainly focus on
partial decomposition which only estimates the cumulative effect of several paths. A
complete decomposition of each path is necessary for the comprehensive understanding
of the causal mechanism. Furthermore, the existing methods need to assume no time-

varying confounders, which restricts the utility of these methods on longitudinal data.

To address the issues mentioned above, this study proposes a generalized
framework for causal multi-mediation analysis via both partial sequential
decomposition and complete interventional approach, especially for the survival
outcome. For simplicity, we name partial sequential decomposition as partial
decomposition approach and name complete interventional approach as interventional
approach in the following paragraphs and sections. There are two contributions in this
study. First, we propose comprehensive definitions of partial decomposition and
interventional approaches, under which a generalized form of PSE with an arbitrary
number of mediators has been provided. Second, we extend partial decomposition and
interventional approaches into the context of survival analysis. We demonstrate the
mediation parameters of interest perform a g-formula while mediators are weighted by
a normally distributed variable when all mediators are continuous and normally
distributed. The parameters can be viewed as a general form of a series of previous
works in this topic (Cho and Huang, 2019; Huang and Yang, 2017; VanderWeele, 2011;
Yu, et al., 2019).

The remainder of this paper is organized as follows. In Section 2, we introduce

notations and definition for causal multi-mediation analysis under partial
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decomposition and interventional approaches for the setting with an arbitrary number
of mediators and any types of outcomes. In Section 3, we derive the estimators in terms
of survival analysis by using Aalen’s additive hazards model and Cox’s proportional
hazards model. In Section 4, we demonstrate the asymptotic properties. In Section 5,
we provide the simulation results in different scenarios to demonstrate the performance
of estimation. In Section 6, we illustrate an application to investigate the mechanism of
methylation signals on mortality through the transcriptional activity of several genes

which are nested to each other. We discuss the strength and limitations in Section 7.

2. Generalized framework of causal multi-mediation analysis

In this section, we first provide the generalized definition of PSEs for any types of
outcome variables. Since PSEs cannot be nonparametrically identified, interventional
approach for completely decomposing all PSEs and partial decomposition approach
without changing the PSE definition are used to address this issue. The corresponding

identification processes and the required assumptions will also be demonstrated.

2.1. Notation, parameter of interest in ordered multiple mediators, and
difficulties

To simplify the notation, we denote V; ;y = (Vi Vi ...,Viz) as a subvector

of a vector V where i; and i, are two nonnegative integers satisfied i; < i,; we
further define V(;, ;,) = v; for iy =i, =i, and V; ;) = a null vector for iy > i,.
Furthermore, we use V(;.x,_;) to denote (Vi,,...,Vi_1,Visq,...,Vk). Let K denotes
the number of mediators, A the exposure, M = (M(l:K)) the causally ordered
mediators, Y the outcome, C, the baseline confounders, and C = (C(l:,{)) the time-
varying confounders. C; represents the k-th confounders among the £-th mediator M,
and Y which occurs after and is potentially affected by M, _; and the other previous
variables for k € {1,2, ..., K}. The causal relationship among all variables is illustrated

by a directed acyclic graph (DAG) in Figure 2.

In the counterfactual framework, Y(a,m(g)) represents the counterfactual
value of Y suppose (4, M(1x)) is set to (a,myk)). Let My(a, me 1)) be the
counterfactual value of My suppose (A, M(1x-1)) is set to (@, m_q)) for k €
{1,2,...,K} (Robins, 1986). Furthermore, we assume consistency (Pearl, 2009;
VanderWeele and Vansteelandt, 2009; VanderWeele, 2009), under which Y(a, m(l’K))
is equal to the observed Y if (4, My k)) isequalto (a,m(k)) and My(a, mek_1))
is equal to the observed M, if (A4, M(y,-q)) is equal to (a,mk-1)) for k €
{1,2,..,K}.

Since the number of PSEs increases exponentially (= 2X) according to the
involvement of M, k), a definition system is required for a generalized setting. We
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propose a comprehensive coding system for notation simplification and define PSEs.

In the setting with K ordered mediators, a set of all paths is defined as

L={lg=M),...I(M)) |
d=YK_ IM)x2¥*+1,I(M) €{0,1} for k=1,..,K},

where I(M,) = 1 represents the path l; passing through the k-th mediator, M. For
simplicity, each path l; = (I(My),...,I(Mg)) in L is numbered as d, which is an
integer converted by a one-to-one converted function (&), which is defined as
E(I(Ml), ...,I(MK)) =YK _I(M;) x 2k + 1. Each converted number (i.e. d) is
specifically mapped to one path. On the basis of these converted numbers, PSE can be

qualitatively defined as a function of the converted number as follows:

Definition 1 (Qualitative definition of Path-Specific Effect, PSEx(d)).

For K mediators, PSEg(d) represents the path-specific effect with respect to the path
ly =My, .., I(M)), where d € {1,2,3,...,2X} and I(My) =1 represents the
path l; passing through the k-th mediator, M;,.

In additional to the qualitative definition, the PSEx(d) is needed to be
quantitatively defined under counterfactual model. Before this, we must define
“iterative counterfactual mediators” and “multi-mediation parameter” as Definition 2

and Definition 3, respectively, for simplifying the notation.

Definition 2 (Iterative counterfactual mediators, My (@1 2k-1))).

For k=1, M{(a;) = M;(a;), which is the counterfactual value of M; suppose A = a;.
For k € {2,..,K}, let My(aq k1)) = My (a1, M{(az), ..., Mg_1(apk-2,1 5k-1y)), Which is
the  counterfactual value of M, suppose (A M1k-1)) is set to
(as, Mi(ay), s Mi_1(@pk-2 4 5k-1y)). Forany k € {1,...,K}, My isa function of a(1,2k-1)-

On the basis of Definition 2, we can further define multi-mediation parameter in a

general form as Definition 3.

Definition 3. (Multi-mediation parameter ¥y (a(l,zK)|Wt))

Ik (a(1,zK)|Wt) =F [Wt (Y (al,M{(az), M;(as, ay), ..., Mg (a(zx—1+1_21()))>]

where W;(+) is a transfer function.

Typically, we consider the identity function as the transfer function (W,(x) = x)
in the case of studying time-independent outcome, and thus, the multi-mediation
parameter in Definition 3 is simplified as the expectation of the counterfactual outcome
suppose that (A,M(LK)) is set to (ar, Mi(az), M;(as, a,), ..., Mg(ar-141K5)) -
Additionally, for survival outcome, the transfer function is specified as an indicator

function with respect to the time variable t (Wt x)=1I(x= t)), and subsequently, the
5
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)% (a(1,zK) |W;) can be rewritten as the survival function of the counterfactual outcome.

Based on Definitions 2 and 3, we can use 9 to quantitatively define PSE.

Definition 4. (Quantitative definition of PSE)
PSE(d, A(1:2K;—q)» A1) )| QW)
= Q(x([aq1:a-1) aa)» a(d+1;2K)] (W), 9k ([ac1:a-1) aZo)» a(d+1:2K)] (W),
where Q(*) is a nonspecific comparative function.
In Definition 4, PSEk(d, a(l:ZK;—d)’azl)'aEO)lQ’Wt) is defined in terms of the
change of ¥y by changing the value of a; from ag, to ag, when all other
variables are fixed as A(1:2K,—a) and the definition of multi-mediation parameters

guarantees that the influence of changing a,; reflects the effect of the exposure on the
outcome through the d-th path. The interpretation of PSEg(d, (1:2K;—q)» a1y )| Q W)

is determined by Q(x4,x,). For example, if Y is a binary variable and W;(x) = x,
three types of Q(x;,x,) are commonly used in medical research:
(1) Q(%4,%x3) = (x4 —x,) for the risk difference scale,

(2) Q(x4,%x3) = x1/x, for the risk ratio scale, and

—__%X X2 .
3) Q(xq4,%5) = T / o) for the odds ratio scale.

Furthermore, when Y is the survival time and W, (x) = I(x > t), the causal effect of
interest is usually defined on the hazard function, and the corresponding comparative

functions are formulated as
_Xm(t) _dXZ(f)

4) Q(x.(t),x,(t)) = Xl‘(itt) le(i;) = 1,(t)/A,(t) for the hazard ratio scale, and

Cdxi(®_dxa(®)
(5) Q(x1(t),x,(t)) = T‘(i;) — T‘g) = A,(t) — A,(t) for the hazard difference scale,

in which x,(t) and x,(t) are two survival functions, and A,(t) and A,(t) are the
corresponding hazard functions. For simplicity, we use Q(x{,X;) = (X; — X3)
throughout Section 2.

Although a;.,x._gy can take any values in Definition 4, Denial et al. concluded

that there are only (2%)! ways of decomposing the total effect into PSEs (Daniel, et
al., 2015). Following previous works (Lin and VanderWeele, 2017; Wang, et al., 2013),

we use one of the ways to specify PSE, and the expression is shown as follows:

Definition 5. (PSE for decomposition of TE).
PSEK(d, aél), azo) |Wt) = 191( ([C_lzl)d, aEO)ZK—d] |Wt) - 19K ([C_lzl)d_l, dzo)ZK—d+1:| |Wt)
* * — k * *
TEx (), a{oy|We) = =1 PSEx(d, a(y), afoy|We)

where da)i and c_lzo)i represents a vector composed by ag;y and a(g, with length i,
respectively. Here TEg(a(y), ag|W,) is equal to E[W,(Y(a(yy))] — E[W:(Y(a(p)))] by
consistency, which is the traditional counterfactual definition of the causal effect of 4
on Y with two levels a;y and a).
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Two issues merit to be noticed. First, if there is one mediator (i.e. K=1), PSE,(1)
and PSE,(2) are exactly the same as natural direct effect and indirect effect,
respectively, defined by Robins and Greenland (Robins and Greenland, 1992). Second,
it is the same as the concept of PSE proposed by Avin (Avin, et al., 2005), but we here
propose a notation and framework which is suitable for the cases with any arbitrary
number of ordered multiple mediators. However, as noted by Avin et al,
Iy (a(1'2K)|Wt) as well as most PSEs are not identifiable under conventional
assumptions (Avin, et al., 2005; Vanderweele, et al., 2014). Two approaches are
available to address this issue. First, we can use the interventional approach adopting
an alternative definition instead of traditional PSE for effect decomposition. This
definition has been widely used in natural direct and indirect effects with time-varying
confounders (Lin, et al, 2017; VanderWeele and Tchetgen Tchetgen, 2017;
VanderWeele and Vansteelandt, 2014), and have been extended to the settings with
ordered multiple mediators (Lin and VanderWeele, 2017). We will review this approach
in Section 2.2. The second approach is to partially decompose the total effect into K+1
paths, instead completely decompose the total effect into 25X PSE. This method is
commonly adapted by researchers for two or three mediators. We will propose a general

form for any arbitrary number of mediators in Section 2.3.

2.2. Approach 1: interventional approach based on randomized interven-
tional analogue of path-specific effect (iPSE)

Before defining the iPSE, we must define “conditional iterative random draw of
counterfactual mediators” and a “interventional multi-mediation parameter” in advance,

as Definition 2.a and Definition 3.a.

Definition 2.a. (Conditional iterative random draw of counterfactual mediators, G k(a(l’zk—l)))
All definitions are conditional on baseline confounders C,. G;(a,) is a random draw of
M;(ay). G,(aq,a,) is a random draw of M,(ay,G,(a,)), which is the counterfactual
value of M, suppose (A4, M,) is setto (ay,G,(a,)). Consequently, for k € {3, ...,K},
let Gy(agyk-1y) be arandom draw of My (ay, G, (ay), ..., Gre-1(agk-241 2%-1y)), Which is
the  counterfactual value of M,  suppose (A, Myk-1)) is set to

(a1,G1(az), -, Gg-1(Agpk-241 pk-1y)). Forany k € {1,...,K}, Gy isafunctionof a; jk-1,.

On the basis of Definition 2.a, we can further define multi-mediation parameters in an

interventional form as Definition 3.a.

Definition 3.a. (Interventional multi-mediation parameter pr(a(l,zK) |Wt))
1% (a(l,zx) |Wt) = E[Wt(Y(al, G,(a,), G,(as, ay), ..., Gk (a(zx_lﬂ,zx))))].

Similar to Definition 3, the transfer function can be specified as the identity function
7
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for the time-independent outcome or the indicator function with respect to time t for
survival outcome. As the result, the interventional multi-mediation parameter in
Definition 3.a is the expectation of a transferred counterfactual outcome suppose that
(4, M(l,K)) is set to (ay,G1(az), Go(as, ay), ..., GK(a(ZK-lJrLZK))). Next, we can use
@ to define iPSE.

Definition 4.a. (Randomized interventional analogue of path-specific effect (iPSE))
IPSE(d, A(1:2K;-a) Ay Aoy |Q, W)
= Q(ox([a@.a-1) a(1), Aa41:26)IWe), ok ([a(1:a-1) a0y Aa+1:26) [ |We)),

iPSE(d, a(l:ZK;—d)'azl)’azo)lQ'Wt) is defined in terms of the change of @ by
changing the value of a; from az‘o) to az‘l) when all other variables are fixed as
A(-g)- Similar to Definition 5, we specify iPSE using the following expression for
convenience of decomposition and define the randomized interventional analogue of
total effect (iTE):

Definition 5.a. (iPSE for decomposition of iTE).

iPSE(d, afl).afoﬂwr) = ¥x ([dzl)d'azo)zl"—d] |Wf) ¥k ([azl)d—l'aEO)ZK—d+1] |Wt)
iTEg (agyy, agyIWe) = Zgil; iPSEK(d' (1), Ao W)

2.3. Approach 2: Partial decomposition approach

Although the interventional approach can provide completely decomposition with
2K paths, three limitations merit to be noticed. First, the definition of iPSE, although
obtains the essence of PSE, still deviates from the traditional definition. Second, the
sum of iPSE is also the analogue of total effect (iTE), instead a real one. Third, the
interpretation of the definition based on iterative random draw is complicated.
Therefore, some researchers prefer to keen the original definition of PSE. As a trade-
off, the effect can only be partially decomposed into K+1 paths, instead of 2X. The
effects corresponding to these paths are termed partPSEs through this article and are
exactly the sum of several non-identified PSEs. In previous literature, this partial
decomposition has been applied to two or three mediators (Cho and Huang, 2019;
Huang and Yang, 2017; Huang and Cai, 2015). An interventional analogue has been
proposed (Moreno-Betancur and Carlin, 2018; Vansteelandt and Daniel, 2017). In this
study, we propose a general definition for partial PSEs. We will identify the partial PSEs
and discuss the assumption required for identification in Section 2.4. Similarly, we first
define “Nested iterative counterfactual mediators” and a “partial multi-mediation

parameter” as Definition 2.b and Definition 3.b, for simplifying the notation.

Definition 2.b. (Nested iterative counterfactual mediators, M ,;r (e(l,k))).

8
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Mi(e;) = Mj(ey). For k € {2, ..., K}, let MJi(eii)) = My (e, My (), o, Mi_; (e1i-1)))-
which is the counterfactual value of M) suppose (A, Mx-1)) 1is set to

(ek,Mf(el), ---'M;_1(e(1,k—1)))- Forany k € {1,...,K}, M; is a function of e(q y).

On the basis of Definition 2.b, we can further define partial multi-mediation parameter

in a general form as Definition 3.b.

Definition 3.b. (Partial multi-mediation parameter (al, €(1,k) |Wt))

Yi(as eqinIWe) = E [Wt (Y (alr M (en), M3 (er.2)) M3 (eci), s M;E(e(l.l())))]
where W; is a transfer function.

Definition 3.b implies that the partial multi-mediation parameter represents the
cumulative effect of multiple paths, while the interventional multi-mediation parameter
in Definition 3.a can be used to quantity each path. In Section 3, we provide a theorem
to detail the relationship between partial PSE and interventional PSE in terms of
survival analysis when analytical estimators are available. We next use the partial multi-

mediation parameter in Definition 3.b to define the partPSE.

Definition 4.b. (Partial path-specific effect (partPSE))
partPSEg (0, €(1,K) aa)' azo)|Q; Wt) =Jq (IPK(aa); e(l,K)lwt) — Yy (aZo)» 3(1,K)|Wt))
partPSEK(g, €(1:K;—g) aa), azo)|Q: Wt)

=0 (¢K(a1» -1 2ty eorrio]We) = i (av [ g-1) o e(g+1,K)]|Wt))
for g € {1,...,K}, where Q(-) anonspecific comparative function.

In Definition 4.b, partPSE(g, e(1.x;—g), (1), A(0)|@, W) is defined in terms of
the change of Yx by changing the value of e; from afo) to aa) when all other
variables are fixed as e(q.x,—g), and the definition of multi-mediation parameters
guarantees that the influence of changing e, reflects the effect of the exposure on the
outcome through Mg, which includes all path passing or not the following mediators
(M (g+1,x)), but not through the previous mediators (i.e. My 4_1)). Similarly, we further
specify the value of (aq, e(1 k)) for all partPSEs in order to ensure that the sum is equal

to TE as follows:

Definition 5.b. (partPSE for decomposition of TE).
partPSE (0, {1y, aio) W) = i ([atay @loy, | IWe) — Wi ([aloy @y ] IW2)
partPSEy(g, ayy, aje)| W)

=Yk (aa)' [‘_‘El)g"—‘EO)K_g] |Wt) — ¥k (aé‘w [‘_‘El)g_l"—‘a)),(_gﬂl |Wt)

for g>0, As a result, the sum of all partPSE will equal to total effect, i.e.
Y=o partPSEx(g, ajyy, ajy)|W;) = TE by consistency.
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2.4. Identification
In this section, we discuss the identification process and the required assumption

for iPSE and partPSE. For PSE, four assumptions are required:

Assumption 1. Unconfoundedness among exposure and outcome.
Y(a, m(l’K)) J.l. A|CO

Assumption 2. Unconfoundedness among mediators and outcome.
Y(a, m(l_K)) I M, |C(0_k),A, M(l,k—l) fork € {1,2,...,K}
Assumption 3. Unconfoundedness among exposure and mediators.
My (a,mp-1)) L AlC, fork € {1,2,...,K}

Assumption 4. Unconfoundedness among mediators.
Mi(a, myk-1)) L My|Ceojy, A M(yj—1y forj € {1,2, ...,k — 1} and k € {2, ...,K}

Under consistency assumption and Assumptions 1 to 4, interventional multi-
mediation parameter can be identified as
Pk (a(1,2K) [We)
= fco fm E[Wt(y(alt m(l,K)))|Co] HII§=1 dFGk(a(Zk_1+1’2k))|c0 (mglco) dFC0 (co)
= fco fm I'(co, a4, My k) (W) Hlk(=1 Hy (my, Q(k-141,2k) Co) dFCO (co)- (1)

LK)

LK)

where I"(co,a1,m(1,1<)|Wt) =

fC(l,K) E[Wt(y) |a1, C(0,k)» m(1,1<)] Hf:l chk|c(0’k_1),A,M(1’k_1) (Ck|C(o,k—1), a, m(1,k—1))

and Hk (mk, a(zk—1+1'2k), CO) =

J; J

M(1k-1) Y C(1k) dFMk|ArM(1,k—1):C(0,k) (mklazk‘1+1'm(1.k-1)' C(O,k)) X

k
T1o1 AF jamey oy 0 jny (Gl B2i140 M1, =13, €c0,j-1)) X
[Tzt H; (m;, a ; s C
j=1 i\ G (ok=1427-141,2k=142/), Lo

The details about the identification process and Assumptions I to 4 have been described

in previous literature (Lin and VanderWeele, 2017).

Compared with iPSE, partPSE required two extra assumptions for identification:

Assumption 5. Confounders among mediators and outcome is not affected by previous
covariates.

Y(a, m(1,1<)) 1L (M (e1), My(ez,my), ..., MK(eK: m(1,K—1)))|Co

Assumption 6. Confounders among mediators is not affected by previous covariates.
Mk(ek, m(ljk_l)) il (Ml (el), Mz(ez, ml), ey Mk_l(ek_l, m(ljk_z)))lcb for k € {2, ey K}

Since the presence of time-varying confounders C(q ) conflicts with Assumptions 5
and 6, an assumption of no time-varying confounders is further required for the
identification of partPSE. Details about Assumptions 5 and 6 will be illustrated in
Appendix Sections 1.1 and 1.2.
Under consistency assumption and Assumptions 1 to 6, partial multi-mediation
10
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parameter Yy (al, 9(1,K)|Wt) is identified as

% (a1; €(1,K) |Wt)

= fco,m(u{) E [Wt (Y(al'm(l,l())) |Co = CO] ITi=1 dFMk(ek,m(l_k_l))wO (mylco) dFe,(co)

= ch.m(l,K) E[Wt(Y)|a1, Co, m(1,1<)] ITk= dFMk|CO,A,M(1,k_1) (mk|co' € m(l,k—l)) dFe,(co) (2)

The identification of (2) is shown in Appendix Section 1.3. If we assume previous

mediator will not affect the following mediator, the partial multi-mediation parameter

can be rewritten as

vk (ar, e W)

= fCo.m(Lx) E [Wt (Y(a1: m(l,K))) |Co = Co] H11§=1 dFMk(ek)|c0 (mglco) dFCO (co)
E[Wt(y) |a1, Co» m(l,K)] [Tk= AFyicoa(MiclCo, €x) dFc, (o) 3)

= fco,m .

Formulil (;) is exactly the multi-mediation parameter under paralleled mediators used
by previous literatures (Taguri, et al., 2015; Wang, et al., 2013). Therefore, we conclude
that the paralleled multi-mediation parameter is a special case of the partial multi-
mediation parameter. Two multi-mediation parameters (2) and (3) are decomposing a
total causal effect into K+1 pathways.

Assumptions 5 and 6 hinge the time-varying confounders even if all these
confounders are collected. It is likely to be violated if the time period of all multiple
mediators is long. In addition, as mentioned previously, partPSE cannot completely
decompose the effect into 2% paths. That is the trade-off to keep traditional definition.
In cases of one mediator, the interventional analogue of natural direct and indirect
effects will reduce to its standard definition when mediator-outcome confounders are
not affected by exposure (Vanderweele, et al., 2014), even under time-varying settings
(VanderWeele and Tchetgen Tchetgen, 2017). By contrast, for multiple mediators
without model assumptions, iPSE is not a general form of partPSE, even if time-varying
confounders are absent. Given parametric models for outcome and mediators, the

partPSE can be decomposed into several iPSEs, and the detail is shown in Section 3.

2.5. Definition of PSE for survival outcome
In Section 2.5 and what follows, we focus on the context when survival time is the

outcome of interest (i.e Y = T). We applied Approaches 1 and 2 to define PSE for
survival outcome, separately. Before deriving PSE, the multi-mediation parameters in
Definition 3.a and Definition 3.b are reformed as the survival functions of the
counterfactual outcome. More specifically, given W,(x) = I(x = t), equations (1) and

(2) can be rewritten as
Oy (a(1,zK)i t) = @k (a(1'2K)|Wt =1I(x > t))

=/, fm(uo I (co, a1, M1 iys ) T2y Hi (mk' Q514124 Co) dFc,(co). (4
where
FS(COralrm(l,K); t) =T (00: ay, M |We = 1(x = t))
11
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K
(LK) Sy (t]as, o0 M) [lie=1 dFCklc(O,k—l)'AﬂM(l,k—l) (ckleope-1y a1, m(l,k—l))

and
lplsé(al'e(l,l(); t) = Yy (al'e(l,K)lwt =I(x > t))
Sy(t|a1: Co, m(l,K)) HIIS:1 dFMk|C0,A,M(1,k_1) (mklcor €r, m(l,k—l)) dFCO (co)
Q)

Sy(t) is the survival function with respect to survival outcome Y, and

=/,

Co0,M(1,K)

ll),s((al, e(l,K);t) and @3 (a(llzK);t) are exactly the survival function of the

counterfactual outcome by the definition. Let Ay (t) is the hazard function of Y. We
can define the corresponding hazard functions of the counterfactual outcome as

d(p§<a(1’2K);t>/dt

Ay (a(l,ZK);t) = Av(a1,61(02),62(a3,80), 6k (@ x-1,, e ) (&) =~ o) and
. dfpzs(<a(1 ZK);t)/dt
A‘r"(al'e(l"();t) :AY(a:L,MI(eﬂ.M;(9(1,2))'--"1‘/’11;(9(1,1()))(t) - (pﬁ(a(lzK);t) '
(6)

Since the counterfactual survival function are identified above, we can subsequently
obtain the identified hazard functions in (6) by plugging the formulas of (4) and (5).
Based on hazard functions, iPSE and partPSE in the hazard difference (HD) scale,
termed iPSERP and partPSEXP, are defined as follows:
iPSERP(d, a(y), ajo)
=4y (a(lfzK) - (dzl)d' azo)zK—d) ; t) — (a(l'ZK) - (dzl)d—f C_lzﬂo)z’(—azﬂ) ; t)
for d € {1, ...,2%}, and
) partPSER” (g, gy a(o))

= Ig=0[Ay(a1 = afy, e t) = Ay(ar = agy), e i t)] +

lig>0) [/11/) (al' e = (Aa)  Aoy,_ o) t) — Aylav e = @), 8oy, ) t)]
for g € {0, ...,K}

(7)

where [4—¢y and I(4sg) are indicator functions for g = 0 and g > 0, respectively.
Similarly, for the log transformed hazard ratio (HR) scale, iPSE and partPSE can be

defined as follows:
iPSEfR(d, ajyy, afy))

= log (Lp (a(l,zx) = (agl)d, ‘_‘Eo)zk_d» ; t) —log (/L,, (a(l,zx) - (agl)d_l, ago)zK_dH)) ; t)
for d € {1, ..., 2%} and,
) partPSE,’(’f? (g, a1y afo))
= Iig=0)|log(Ay (a1 = a(yy, ei0); t) = log(Ay(ar = afoy e i)); t)] +
[(g>0) [109 (le(alt €K = (‘7?1)9' dzo)K_g))i t)
— lOg (;{1/) (al, e(LK) = (dzl)g—l’ aEO)K_g+1)); t)]
for g € {0,...,K}.
(®

12
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3. Estimation for PSE with survival outcome

In this section, we applied Aalen’s additive hazards model to derive PSE in HD
scale and Cox’s proportional hazards model in log HR scale. We propose a parametric
approach in which the statistical models of survival outcome, mediators and
confounders are specified. We mainly focus on the case of assuming mediators’

distribution are Gaussian in order to derive the analytic form.

3.1 Model specification for mediators and confounders

For the k-th mediators and confounders, the regression models are described as
follows:
My = ap'Co + B A+ Xk -1 VienCn + Lies1) [Zk216knMy] + emi
Cio = afCo + BEA + Lies 1) |[ZRZ1VERCr + ZRZT 8n M| + ec i )
The error terms {&y,} and {e;,} are independent and normally distributed with
mean zero and respective variances, {g .} and {0 ,}. The parameters above
0=f{a={af,aflk=1,..K},B={BM Bi|k =1,.., K}, 0% ={0f, olk|k =1,.., K},
y = {yll"{,{y,%l,y%c,y,fdk =2,..K:h=1,.., (k- 1)}},
s={6p.0|k=2 .., K;h=1,..,(k—D}
can be estimated using the maximum likelihood approach, and the maximum likelihood
estimator (MLE) of @ is denoted as 8. Since the partial decomposition approach
requires the assumption of no-confounders affected by previous covariates, the
regression models of mediators are modified to drop out the time-varying confounders
(Ca1:x)) from mean when we study partial decomposition. The models of mediators are

modified as follows:
My = aflCo+ BMA + L1y [ 221 60 My | + e for k=2,..,K (10)

To obtain the analytic forms of (4)-(8), we applied moment generating function

uniqueness theorem to characterize Hj (mk, A(2k-1412k)) co) by Theorem 1.

Theorem 1. Let Hy (mk, A(k=141,2K)s co) = hy (mk, A(k=141,2K)s Co) dm,. If media-
tors and confounders follow the regression models as above, then
hy (mk, A(2k-141,2k)) co) is a Gaussian probability density function with mean
u (o, (k=141 ,2K)s ¢p) and variance 1224(0). Moreover, uk (8, A(k-141,2K)s co) and
TZZ(O) have recursive forms as follows:
“’1:1 (9' a(zk'1+1,2’<)rco) = “llyco + ﬁ,’c"’aqu“ + Zlfl=1 yllgl X
13 (9: A(2k=141,2k-142h-1), Co) * k> [Zﬁ;i Skn X My (9' A(2k-1 4201412k 142M)) CO)]

for k =1, .., K, where

13
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M,Cl (3, a(zk—1+1‘2k—1+2h—1), Co) = aﬁco + ﬁgazk—1+1 + l(k>1) [227:11 yffh’
X Mg’ o, a( k=141 2k—1+2h’—1)J o) + 22’_:11 6}fh’ X .u%’ o, a(zk—1+2h’—1+1’2k—1+2h’)J co)]
and 7% (9) = UMk + Zh 1(25 n Vie X (Eksh))zafyh +
L(k>1) [Zh=1(5kh + XK 1 Vie X (sth))zTZ%(e)], in which
Exsn = I(ssny | 2321 Exan X v&1] + 1(s=hy and Fygp, = I(sop[8% + X521 Fran X v |-

The proof detail is presented in Appendix Section 2.1. Based on Theorem I, we next
derive the closed forms of estimators for iPSE and partPSE under HD scale using
Aalen’s additive hazards model in Section 3.2 and under log HR scales using Cox’s

proportional hazards model in Section 3.3.

3.2 Aalen’s additive hazards model

Following the regression setting of mediators and confounders, we apply Aalen’s

additive hazards model for the outcome Y as follows:

Av(t1A, C(O,K)'M(l,l{)) =Ao(®) + a”Co + YA+ YKo Vi Cp + Zha1 Sh My, (11)

where 2(t) is the baseline hazard and 642" = (a¥,BY,yy = {y} |h =
1,..,K}, 6}1 ={6/|h=1, ...,K}) is the regression coefficient. Typically, the estimator
of 09‘“"“ can be derived by the semiparametric estimating equation (Lin and Ying,
1994), and we denote the estimator as 99"‘16“. Here, we separately introduce the

estimators for iPSERP and partPSELP.

iPSEH®D

According to models (6), (9), and (11), we have the hazard function of

counterfactual outcome incorporated with Aalen’s additive hazards model as follows:

i(p (a(l_zx); t)
=20(®) + (B + (T2, R;(8,00")BF) ) ay + (a + ZK_, R, (6, 047"l )E(Co) +
z;f_lz.(a galen) (e. Aortaaty €0 = E(Co) ) - Ty RE(0, 057" )o? ¢ -
K 738, eAalen)T 0)t

where

Rk (8,07'™) = vk, R;(6,09"'°™) =y} + X§_;.1 Ra(8,057 ™)y ;, and

Zg-j(0, eAalen) = 51}; j e [Zj -O(V(K -J°) (22(] o HLEPS(K—j",K—j) i) 6((:K—j°)(1(—j))] .
P,(K — j°,K — j) is the st subset of P, and P = {(a,b)|a,b € {K —j°, K —j°+1,...,K —
j+1}anda > b} U @, where @ is a null set. The detailed derivation is shown in

Appendix Section 3. Consequently, iPSEHP in (7) can be derived as

ford=1, iPSEFP(1, afl),azo)) = (" + Z] 1R (0, HAa’e")ﬁ]C)(a(l) a(p)), and
14
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ford>1, iPSEFP(d, ayy, afy)) = H (0, 05%em, a(, oy = (agl)d, ago)zK_d)) —

Aal — (7 =
H (9' 0y ", a(1,00) = (a(l)d—1' a(o)z"’—d+1))

where H (0, Bﬁale",a(l’zx)) =YX, Z;(0,053m )l (0, A(2i-141,27) C0 = E(CO))
(12)
In particular, when time-varying confounders (i.e. C;x)) are absence, equation
(12) is identical to the structural equation modeling (SEM) estimator. We termed the
PSE without time-varying confounders as iPSEF"(d, acyy Ayl Cary = @) . The
analytic form is detailed in Appendix Section 2. For example, under two mediators, we
have iPSES(4,a(y), aloy|Caxy =©) = 65625 B1" which is corresponding to the

result of product method by the path A B—M> M, 67; M, 6—Y> Y. More examples of iPSEFP
1 21 2

with and without time-varying confounder are illustrated in Appendix Section 3.

partPSEHP

Because the existence of time-varying confounders violates the assumptions of

partial decomposition approach, additive hazard model in (11) should be modified as
Ay (14, Co, M1 iy) = Ao(t) + a¥Co + BYA + X_1 8F M, (13)

Based on equations (6), (10) and (13), we derived the hazard function of counterfactual
outcome as below:
Ay(ar e iit)
=20(®) + B¥a; + X5, 20(0,0571)B e; + (a¥ + XK, Z0(6,05M™)a/" )E(Co) —
2
j'(=1 (ij (g, egalen)) 01\24,;' ¢,

where Zg(0, 052" = &%, Z7(6,05%°™) = 8/ + Xi_ ;11 23(0,057™)6} ;. The detail is
provided in Appendix Section 3. Based on the result above, partPSE incorporating with

Aalen’s additive hazards model in HD scale (7) is
partPSERP (g, (1 afo))

= 1(g=0)ﬁy(aa) - an)) + I(g>0)Zg(9' ByAalen)ﬁéw(azl) - afo)) forg €{0,1,2,..,K}.
(14)

In 2017, Huang and Yang proposed a multi-mediator model of survival come for
partPSE (Huang and Yang, 2017), and they provide the corresponding estimators for
the case of two ordered mediators. Formula (14) is essentially an extension of Huang’s
work to the general form of partPSE. More examples of partPSEHP are illustrated in
Appendix Section 3. Additionally, the partPSE in formula (14) is the sum of a certain
set of iPSEs under no time-varying confounder assumption. We subsequently proposed

Theorem 2 to verify the relation between them.

15
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Theorem 2. In the setting with K mediators and Aalen’s additive hazards model, we
have

partPSERP (g, a(yy, afy)) = Yaen, iPSEZP (d, ajyy, aig)|Caie) = D),
where g € {1,2,...,K} and Dy = {297 + 1+ ¥ 257 | (b} S {g+ 1,9 +2,...K} }.

The proof of Theorem 2 is presented in Appendix Section 2.2. In Theorem 2, Dy is a
set of codes, and these codes are exactly corresponding to the paths starting from the
gen mediator. In another words, partPSEHP can be further decomposed into several
specific iPSEHP which are all first mediated by the g,, mediator, implying that
iPSEHP contains more detailed information about mechanism than partPSEHP for

causal effect decomposition.

3.3 Cox’s proportional hazards model

In this section, we further characterize iPSEFR and partPSERR via Cox’s
proportional hazards model. Different from Aalen’s additive hazards model, Cox’s
proportional hazards model assume that the hazard is determined by the covariates
exponentially, that is

log (¢ (t14, Co 0 M) = log(Re(8)) + @’ Co + BT A+ Th_, v G +
Zh=106n M,

(15)
where 1(t) is the baseline hazard and 65°* = (a¥,BY, v} = {y}|h=1,..,K}, 8} =

{6¥|h=1, K}) is the corresponding parameter. Similar to Section 3.2, we derived

the corresponding estimators for iPSEHR and partPSEHR as follows.

iPSEHR
By formulas (6), (9), and (15), and the rare outcome assumption (Huang and Yang,
2017) which implies e~ (tl4Cor0MuK) ~ 1, one approximation of the counterfactual

log hazard is
log (/T(p (a(1,2’(); t)) ~ loghe(t) + (BY + XK., R;(0,05)Bf )a; +
(o + 35, R;(6,05°%)af )E(Cy) +
K 7;(8,05%)ul (9, Q141,27 €0 = E(Co)) + 35,7, (6,05%)7%" ().
where R;(0,0,) and Zk(0,0,) have been defined in Section 3.2. Derivation of the

above expression is in Appendix Section 4. We then derived the analytic forms of (8)

as follows:
ford =1, iPSEfR(1, a0, ajy) = (ﬁy + (X2 R (6, ecox)ﬁjc)) (atyy — a(py), and
for d > 1, lPSEIIEIR(d, azl), azo)) ~H (0, Oy ) a(llzK) = (a(l)d'a(o)zK—d)) -
C _ [ == —*
H (9' 65°%, a1ty = (., a<o>zx_d+1))
where H (0 05°x Ay, 21{)) leZj(O, Bf,"x)u?" (0, A(2i-141,2) Co = E(CO))

(16)
16
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partPSEHR
To derive partPSE via Cox’s proportional hazards model, a log hazard model

without time-varying confounders is required, and we modified model (15) as

log (2¢(t14, Co0 M) = 10g(Re(8)) + ¥ Co + BY A + Th_, ST M. (17)

By equations (6), (9) and (17), the approximated log hazard function of counterfactual

outcome is given by
log (iw(al,e(l,,(); t)) ~ log(A(®)) + BYa; + XI_, 20 (6, 65°%) B} ¢

1
+(a” + X521 20(6,05°) " )E(Co) + 5 X1 20 (8, 65°%) a3

where Zg(8,05°) = 6§, Z2(8,05°) = 6/ + Xhi_;4124(0,05°)8};. Derivation of the
above expression is in Appendix Section 4. Based on the result above, partPSE

incorporating with Cox’s proportional hazards model in log HR scale (8) is
partPSEHR(g, (1 afo))
* * C * *
= I(gzo)ﬁy(a(l) - a(o)) + I(g>0)Zg (0, GyOX) Béw(a(l) — a(o)) forg € {0,1, 2, ,K}
(18)
The examples of iPSERR(d, afyy, afy)) and partPSERR(g,af;y, afy)) are shown in
Appendix Section 4.

Obviously, the estimator of iPSEHR is the same as that of iPSEHP by replacing
Bﬁale“ by 0;3,0". As a result, all properties, including the comparison with SEM
estimator and the relation between iPSEfP and partPSEFP which are discussed in
Section 3.2, are still applicable for iPSEZR and partPSERR.

4. Asymptotic theorems

For simplification, we set ag;y and ag, as one and zero in Sections 4 and 5,
respectively. Based on the proposed estimators for PSEs in the previous section, the
following result shows the asymptotic properties about iPSEH¥P(d), partPSERP(d),
iPSEFR(g), and partPSEHR(g) for each d and g. Since these estimators are the
functions of @ and Bgale“ (or 65""), these PSEs can be represented as
iPSEZP(6,051°) = {iPSEFP(d)|d = 1, ..., 2X},
partPSEHP (0, 0421") = { partPSEFP (g)|g = 0,1, ..., K},
iPSERR(6,05°%) = {iPSEfR(d)|d = 1, ..., 2}, and
partPSEHR(®, 65‘”‘) = { partPSEfR(¢)|g = 0,1, ..., K}.

We first provided a theorem to show the asymptotic distributions of PSE estimators on
Aalen’s additive hazards model. As mentioned above, 8 is the MLE and for 0,

17
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égale" the estimator via semiparametric estimating equation for Bf}a'e“, and 95"" the
partial likelihood estimator for 03C,°X. We denote the true value of (8, 03‘}3"*“, 05‘”‘) by
(@, 093"’“, egg"). Under causal assumptions in Section 2, we have Theorems 3 and 4

for the asymptotic distributions.

Theorem 3.
(1) Under Assumptions 1 to 4, we have
—~ D
Vi (iPSELP (8,85%) — iPSELP (65, 033'")) > N(0, E2),
diPSERP (80,053'")

. HD Aal
SHD _ 8iPSER"(6,,055""
6(9,99318") s

int — a(elegalen)T
(2) Under Assumptions I to 6, we have

Vi (partPSERP (8,8271") — partPSEL® (6,, 043'")) SN, 282,

where Cov(8,, 53" and

HD Aalen HD Aalen
where zHD  _ 2PartPSE (60,653 Cov(8, GA31en) apartPSERP (6,043l
part — a(elegalen)T 0 Yy0 6(0,05‘}““*")

diPSE (0,,053°) dpartPSERP(80,053'")

Aalen :
Here, — T PGoTeT and Cov(8,, 093'") are estimated by
2ipseRP(88,™")  opartpsefP(0,9)"") /. Aalen o _
—, = and Cov (0, 0, ) Similarly, the asymptotic
6(9,99319") 6(9,992’"6")

distributions of iPSEf®(6,05°*) and partPSEF®(6,05°%) are derived in the

following theorem.

Theorem 4.
(1) Under Assumptions I to 4 and rare outcome assumption, we have
S D
Vi (iPSEfR (8,85 ) — iPSEF"(8,,0%%)) > N(0, EH1R),
HR _ OiPSERR(8,650* diPSELR(8,,650"
where i = ———awr — 6551 e and
(2) Under Assumptions I to 6 and rare outcome assumption, we have
S D
Vn (partPSE,’}’R (8,65 ) — partPSEFR(0,, egg")) —N(0,ZpR,

h gHR  _ dpartPSEfR(8,,056* C (0 GCOX) dpartPSEfR (8,,056*
wnere part — 6(0,9§,0X)T ov 0 y() a(o‘egox)

Cov(8,, 856%)

0iPSEfR(00,059%) dpartPSERR(8,,65%)

. . C .
Similarly, — 0o 2o and Cov(8,,05%%) can be estimated by
aipSERR(0.8,™)  opartpsERR(9,8™ — [~ : .

R - ), X (T ") and Cov (0, egox), respectively. The details of
2(0,05°%) 0(0,65°%)

Theorems 3 and 4 can be found in Appendix Section 2.3.

5. Simulation

In this section, we conduct a simulation study to evaluate the performance of our
proposed models with particular sample sizes based on Cox’s proportional hazards

model. The Aalen’s additive hazards model can smoothly substitute Cox’s proportional

18
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hazards model in this simulation. Since iPSE and partPSE are the approaches based on
two different assumptions, we consider two scenarios, with and without time-varying

confounders, for evaluation.

In scenario A, we simulated the exposure variable (A), two baseline confounders
(Co1,Cyz ), three mediators ( My, M,, M5 ), and three corresponding time-varying

confounders (Cy, C,, C3) under the models
A ~ Bernoulli(0.2), Cyq,Coa~Bernoulli(0.2),
Cl = 05 + OS(A + COl + Coz) + SCIJ
M1 =05+ 052(14 + C01 + Coz) + 025C1 + EM1,
CZ = 05 + 053(14 + COl + COZ + Cl + Ml) + 025M1 + SCZJ
M2 = 05 + 054(14 + C01 + COZ + C1 + M1 + Cz) + OZSCZ + EMZ'

Cg =05+ 055(14 + COl + COZ + C1 + M1 + C2 + Mz) + 025M2 + &c3, and

Ms; = 0.5+ 0.56(A + Cyy + Coz + C1 + My + Cy + My + C3) + 0.25C; + &3,
where -1, €1, €c2, €Mz, Ec3,and &5 follow a normal distribution with zero mean
and standard deviation is 0.5. To simulate the survival times (Y) from Cox’s
proportional hazards model, we applied the inverse probability method into data
generation (Bender, ef al., 2005), and the simulation procedure is shown as follows.

The event times (7) are generated according to a Weibull distribution as
T =—log(u)/(0.01 x e#T), u ~ Uniform(0,1) where
pir = 0.5+ 0.5(4 + Cyy + Coy + 0.2C; + 0.2M; + 0.4C, + 0.4M, + 0.8C5 + 0.8M5),

The censoring times (Cr) are randomly drawn from an exponential distribution with a
rate of 0.001. As a result, the observed survival times is defined as the minimum of T
and Cr. Different from scenario A including time-varying confounders, scenario B aims
to investigate the properties of partPSE, which assumes no time-varying confounders.
Thus, we generated data without time-varying confounders in scenario B, and, the

generative models are modified as follows:

A ~ Bernoulli(0.2), Cyq,Co2~Bernoulli(0.2),
M; = 0.5+ 0.52(4 + Cyy + Co2) + €m1,
M, = 0.5+ 0.5*(A4 + Cy; + Cyp + My) + £y, and
Mz = 0.5+ 0.5%(A + Cyq + Cop + My + M) + £y3.

Similarly, the event times in scenario B are also generated by

T =—log(u) /(0.01 x etT),u ~ Uniform(0,1), and
For both scenarios, with sample sizes n = 1000, we report the simulation results from

1000 replicates in the next section.

The results of eight (=2°) iPSEXR under scenario A are presented in Table 1, and
we used bias, standard deviation (SD), root mean square error (RMSE), and coverage
rate (CR) to measure the performance of point and interval estimates. We adopted the

bootstrap approach for SD estimation instead of applying the asymptotic variance for
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simplicity. This simulation includes three ordered mediators, and the effects of eight
different paths are estimated. As a result, the absolute value of the bias for each effect
less than 0.003, and the CRs are around 95%. While the CRs for the paths of
A->M;—>M;3—>Y and A>M;—->M;—>M3—>Y are slightly away from 95%, the small
bias and RMSE of these effects reveal that the estimators are efficient. Additionally, the
true effect values of the two paths above are relatively small than the others, implying
that more samples are required for the paths with small effect sizes to increase accuracy.
Under scenario B, Table 2 shows the simulation result of four (=3+1) partPSE:R. The
biases are close to zero, and the CRs are around 95%. The CR of A>M3—Y in Table
2 also less than 95% due to the small effect.

To explore the asymptotic properties of the proposed estimators, we varied the
sample sizes for both scenarios in this section. The simulated data sets are generated
from the same models of scenarios A and B, and fifty different sample sizes uniformly
selected from the interval of (200, 10000) are considered in this simulation. Figures 3(a)
and 3(c) show the quantity of bias under different sample sizes for iPSER and
partPSENR | respectively. Figures 3(b) and 3(d) illustrate the patterns of SD when
sample sizes increase. Consequently, when the sample size increases, the bias and SD
in both approaches massively decreases. The result provides clear evidence that the

proposed estimators converge to the correct parameters in large sample size.

6. Data application

Epigenetics is a molecular process that influences the flow of information between
the underlying DNA sequence and variable gene expression patterns without altering
DNA sequences. DNA methylation is one of the critical epigenetic factors to regulate
gene expression during development and cell proliferation (Jaenisch and Bird, 2003).
Recently, the DNA-methylated regions have been studied extensively in cancer studies
(Hansen, et al., 2011). While the correlation between DNA methylation and gene
expression in cancer has been reported (Spainhour, ef al., 2019), the causal mechanism
across genes remains to be studied. In this section, we used the proposed causal multi-
mediation analysis to explore the underlying causal mechanism in TCGA (The Cancer

Genome Atlas) database.

We chose 453 patients with lung cancer, 226 with adenocarcinoma and 227 with
squamous cell carcinoma, and all of the genomics data and patients’ information were
downloaded from TCGA website. DNA methylation and gene expression were
measured in these patients using [llumina Human-Methylation 450K and Agilent gene
expression arrays, respectively. All genomic markers were measured on primary tumor

samples collected during surgery. From the pre-analysis of the association between the
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methylation-expression pairs and the survival outcome, we identified that the
methylation change in the gene CD109 can significantly affect the survival outcome.
In the literature, DNA methylation of CD109 has a role in gastrointestinal cancer and
colorectal cancer for poor survival (Shigaki, et al., 2015; Yi, et al., 2011). In this study,
we illustrate our method by investigating the detailed mechanisms of CD109
methylation influencing the survival outcome through gene expression in lung cancer

patients.

Let DNA methylation of CD109 at cg06340118 as the exposure (A), survival as
the outcome (Y), gene expression of CD109 as the third mediator (M3). We further
included another two gene expressions (SLC16A3, CLIC6) as (M1, M2) based on the
pre-selected methylation-expression pairs that affected survival. SLC16A3 and CLIC6
have a function concerning ion channels and transporters that are a new class of
membrane proteins aberrantly expressed in cancer (Lastraioli, et al., 2015). To
investigate the causal mechanism, we consider the causal structures as shown in Figure
4. We applied our method to decompose the total effects into eight iPSEs and four
partPSEs, separately. Since the genomic experiment usually does not include the time-
varying confounders, we adopted the reduced version of iPSE without time-varying
confounders as discussed in Section 2. We employed Aalen’s additive hazards model
and Cox’s proportional hazards model for survival analyses. Patients’ age, gender,
ethnicity, radiation therapy, cancer type, cancer stage, and smoking pack-years were
adjusted as baseline confounders (Co).

The result of PSE estimation is shown in Table 3. At 0.05 a-level, partial PSEs
estimated by partPSELP are all significant. In addition, the detailed decomposition
estimated by iPSEXP reveals that the effect sizes of methylation through some
pathways are relatively small. For example, partPSEXP (1), which is the effect first
mediated by M (that is A—>M;Y), is significant. A—>M;Y can be decomposed into
four paths, A->M—>Y, A->Mi—>M—>Y, A->M—>M;—>Y, and
A—M;—M;—->M3—Y, and the result of iPSEP shows that the significant effect of
A—M;Y is mostly contributed by pathways A—>Mi— Y and A—>M;— M3—Y. The
result above reflects the utility of iPSE for comprehensively exploring the causal
mechanism. Additionally, in agreement with the literature, the estimated direct effects
of DNA methylation at cg06340118 in survival (A—Y) significantly away from zero
(Shigaki, et al., 2015; Y], et al., 2011). Moreover, the effect of CD109 methylation at
locus ¢g06340118 on survival time mediated through CDI109 gene expression
(A—>M3—Y) are negative. The negative correlation between DNA methylation and
gene expression among the promoter region has been a pattern commonly found by a

pan-cancer analyses (Anastasiadi, et al., 2018; Spainhour, et al., 2019).
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7. Discussion

Two significant contributions have been made by this study. First, we provide a
framework of causal multi-mediation analysis for an arbitrary number of ordered
mediators, including a general definition and two approaches for addressing the
difficulty of non-identifiability of traditional PSE. Second, we extend partPSE and iPSE
into the context of the survival analysis. Based on Aalen’s additive hazards model and
Cox’s proportional hazards model as well as normally distributed mediators, the
analytic forms of partPSE and iPSE can be obtained in both HD and HR scales. In
particular, when time-varying confounders are absence, the proposed iPSE is identical
to the SEM estimator.

Several limitations merit notice, and some should be improved in further studies.
First, the unmeasured confounding assumption is difficult to verified, and it is
challenging to collect all possible covariates comprehensively. Sensitivity analysis
technique is required in the future when a set of confounders are known in previous
literature but not collected in a study. Second, this framework may not be applicable to
settings with mediators truncated or semi-competed by the survival outcome, that could
cause biased or even undefined PSE estimation. In the future, it is worthy to extend
iPSE and partPSE into the analysis of truncated mediators. Third, although the causal
multi-mediation analysis can detail the mechanism of causal effects, the causal structure
including the order of mediators should be assumed based on domain knowledge.
Finally, a criterion for path selection or mediator selection is necessary to increase the

power of this method when the number of mediators is large.

Sources of financial support: This study is supported by the grant from Ministry of
Science and Technology in Taiwan (No. 108-2636-B-009 -001)
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Figure 1. Literature review of causal multi-mediation analysis with K mediators.

Co>A->C,->M —»->Ck>Mg->Y

%&/

Figure 2. The causal relationship among all variables is demonstrated by a direct acyclic graph

(DAG). A, M1k, Y, Co, and C(q ), denote the exposure, the mediators, the outcome, the

baseline confounders, and the time-varying confounders, respectively.
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1 Table 1. Simulation result under the scenario A for iPSEXR

Path* True value  Bias SD RMSE CR
A-Y 0.609 0.00300 0.11594 0.11598 95.3
A->M—>Y 0.062 0.00082  0.03613 0.03614 94.8
A->M—>Y 0.042 0.00088  0.01985 0.01987 95.1
A->M—>M—>Y 0.009 -0.0001 0.00566 0.00566 95.0
A->M;3;—>Y 0.016 0.00002  0.01768 0.01768 95.0
A->M—>M;;—>Y 0.003 0.00013  0.00664 0.00665 95.6
A->M—>M;3;—>Y 0.001 0.00001  0.00273 0.00273 93.9
A->M;>M—>M;—>Y 0.0002 0.00001  0.00064 0.00064 94.4
2 *Both baseline confounders and time-varying confounders are present in each path.
3 Abbreviation: SD, standard deviation; RMSE, root mean square error; CR, coverage rate.
4
5  Table 2. Simulation result under the scenario B for partPSE!R
Path* True value Bias SD RMSE CR
A-Y 0.50000 0.00519 0.13789 0.13799 95.2
A—>MY** 0.02979 -0.00066 0.03134 0.03135 95.1
A—->M,Y** 0.01289 -0.00009 0.01217 0.01217 94.8
A->M;—>Y 0.00625 0.00033 0.01707 0.01707 93.8
6 *Only baseline confounders are present in each path.
7 **(A>M2Y) = (A>M:2—>Y) + (A>M—>Ms—Y); (A>M1Y) follows the same definition.
8 Abbreviation: SD, standard deviation; RMSE, root mean square error; CR, coverage rate.
9
10  Table 3. Effect decomposition of CD109 methylation (A) on lung cancer (Y) through
11  the gene expression of SLC16A3 (M;), CLIC6 (M,), and CD109 (M,).
Path Aalen’s additive hazards Cox’s proportional hazards
model (in HD scale) model (in log HR scale)
iPSE}P partPSEXP iPSEfR partPSEXR
(PSSDE) P value (PéSDE) P value (PéSDE) P value (PgSDE) P value
0.061 0.061 0.397 0.397
A-Y ©.002) 002" gopgy 0002 gy 0002% oy 00027
-0.015 -0.095
A->Mi—>Y ©.006) 016" ©037) O01*
-0.002 -0.018
A—>Mi>Mi;—>Y ©006) %97 o018 oooge (0028) 0.039% o113 0,005+
-0.0001 (0.007) ’ -5x10* (0.040) ’
A->Mi->M:—>Y o001y 29%7 ©0.005) 9%
-8x10° -1x10*
A->Mi->M>M3—>Y 0.013) 0.933 (0.077) 0.929
-0.013 -0.075
A->MrY ©.001) OO o015 o1z (0009 0.009% 4 085 0.006*
-0.001 0.006) -0.01 0.031)
A->M>M-Y ©.001) 108 ©.006) 0082
-0.029 -0.029 -0.197 -0.199
A->M-Y ©.0000) %02 013 02" ooy %007 (0077 000"

12 * P value < 0.05
13 Abbreviation: PSE, path-specific effect; HD, hazard difference; HR, hazard ratio; SD, standard deviation.
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